無論是身處學(xué)校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。相信許多人會覺得范文很難寫?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇一
(1)理解四種命題的概念;
(2)理解四種命題之間的相互關(guān)系,能由原命題寫出其他三種形式;
(3)理解一個命題的真假與其他三個命題真假間的關(guān)系;
(4)初步掌握反證法的概念及反證法證題的基本步驟;
(5)通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力;
(6)通過對四種命題的存在性和相對性的認(rèn)識,進(jìn)行辯證唯物主義觀點教育;
(7)培養(yǎng)學(xué)生用反證法簡單推理的技能,從而發(fā)展學(xué)生的思維能力.
教學(xué)重點和難點
重點:四種命題之間的關(guān)系;難點:反證法的運用.
教學(xué)過程設(shè)計
第一課時:四種命題
一、導(dǎo)入新課
【練習(xí)】1.把下列命題改寫成“若p則q”的形式:
(l)同位角相等,兩直線平行;
(2)正方形的四條邊相等.
2.什么叫互逆命題?上述命題的逆命題是什么?
將命題寫成“若p則q”的形式,關(guān)鍵是找到命題的條件p與q結(jié)論.
如果第一個命題的條件是第二個命題的結(jié)論,且第一個命題的結(jié)論是第二個命題的條件,那么這兩個命題叫做互道命題.
上述命題的道命題是“若一個四邊形的四條邊相等,則它是正方形”和“若兩條直線平行,則同位角相等”.
值得指出的是原命題和逆命題是相對的..我們也可以把逆命題當(dāng)成原命題,去求它的逆命題.
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(l)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖:
通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
二、新課
【設(shè)問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題外,是否還可以構(gòu)成其它形式的命題?
【講述】可以將原命題的條件和結(jié)論分別否定,構(gòu)成“同位角不相等,則兩直線不平行”,這個命題叫原命題的否命題.
【提問】你能由原命題“正方形的四條邊相等”構(gòu)成它的否命題嗎?
學(xué)生活動:
口答:若一個四邊形不是正方形,則它的四條邊不相等.
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的條件的否定和結(jié)論的否定,這樣的兩個命題叫做互否命題.把其中一個命題叫做原命題,另一個命題叫做原命題的否命題.
若用p和q分別表示原命題的條件和結(jié)論,用┐p和┐q分別表示p和q的否定.
【板書】原命題:若p則q;
否命題:若┐p則q┐.
【提問】原命題真,否命題一定真嗎?舉例說明?
學(xué)生活動:
講論后回答:
原命題“同位角相等,兩直線平行”真,它的否命題“同位角不相等,兩直線不平行”不真.
原命題“正方形的四條邊相等”真,它的否命題“若一個四邊形不是正方形,則它的四條邊不相等”不真.
由此可以得原命題真,它的否命題不一定真.
設(shè)計意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)習(xí)的積極性.
教師活動:
【提問】命題“同位角相等,兩條直線平行”除了能構(gòu)成它的逆命題和否命題外,還可以不可以構(gòu)成別的命題?
學(xué)生活動:
討論后回答
【總結(jié)】可以將這個命題的條件和結(jié)論互換后再分別將新的條件和結(jié)論分別否定構(gòu)成命題“兩條直線不平行,則同位角不相等”,這個命題叫原命題的逆否命題.
教師活動:
【提問】原命題“正方形的四條邊相等”的逆否命題是什么?
學(xué)生活動:
口答:若一個四邊形的四條邊不相等,則不是正方形.
教師活動:
【講述】一個命題的條件和結(jié)論分別是另一個命題的結(jié)論的否定和條件的否定,這樣的兩個命題叫做互為逆否命題.把其中一個命題叫做原命題,另一個命題就叫做原命題的逆否命題.
原命題是“若p則q”,則逆否命題為“若┐q則┐p.
【提問】“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真.
教師活動:
【提問】原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明?
【總結(jié)】1.原命題為真,它的逆命題不一定為真.
2.原命題為真,它的否命題不一定為真.
3.原命題為真,它的逆否命題一定為真.
設(shè)計意圖:
通過設(shè)問和討論,讓學(xué)生在自己舉例中研究如何由原命題構(gòu)成逆否命題及判斷它們的真假,調(diào)動學(xué)生學(xué)的積極性.
教師活動:
三、課堂練習(xí)
1.若原命題是“若p則q”,其它三種命題的形式怎樣表示?請寫在方框內(nèi)?
學(xué)生活動:筆答
教師活動:
2.根據(jù)上圖所給出的箭頭,寫出箭頭兩頭命題之間的關(guān)系?舉例加以說明?
學(xué)生活動:討論后回答
設(shè)計意圖:
通過學(xué)生自己填圖,使學(xué)生掌握四種命題的形式和它們之間的關(guān)系.
教師活動:
高中數(shù)學(xué)教學(xué)設(shè)計案例篇二
一、教學(xué)目標(biāo)
1、在初中學(xué)過原命題、逆命題知識的基礎(chǔ)上,初步理解四種命題。
2、給一個比較簡單的命題(原命題),可以寫出它的逆命題、否命題和逆否命題。
3、通過對四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點:四種命題;難點:四種命題的關(guān)系
1、本小節(jié)首先從初中數(shù)學(xué)的命題知識,給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識,進(jìn)一步講解反證法。
2、教學(xué)時,要注意控制教學(xué)要求。本小節(jié)的內(nèi)容,只涉及比較簡單的命題,不研究含有邏輯聯(lián)結(jié)詞“或”、“且”、“非”的命題的逆命題、否命題和逆否命題,
3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開語句,例如,命題“若,則x,y全為0”,其中的p與q,就是開語句。對學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開語句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過程
(一)引入:一個生活中有趣的與命題有關(guān)的笑話:某人要請甲乙丙丁吃飯,時間到了,只有甲乙丙三人按時赴約。丁卻打電話說“有事不能參加”主人聽了隨口說了句“該來的沒來”甲聽了臉色一沉,一聲不吭的走了,主人愣了一下又說了一句“哎,不該走的走了”乙聽了大怒,拂袖即去。主人這時還沒意識到又順口說了一句:“俺說的又不是你”。這時丙怒火中燒不辭而別。四個客人沒來的沒來,來的又走了。主人請客不成還得罪了三家。大家肯定都覺得這個人不會說話,但是你想過這里面所蘊涵的數(shù)學(xué)思想嗎?通過這節(jié)課的學(xué)習(xí)我們就能揭開它的廬山真面,學(xué)生的興奮點被緊緊抓住,躍躍欲試!
設(shè)計意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
(二)復(fù)習(xí)提問:
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
“同位角相等,兩直線平行”這個原命題真,逆命題也真.但“正方形的四條邊相等”的原命題真,逆命題就不真,所以原命題真,逆命題不一定真.
學(xué)生活動:
口答:(1)若同位角相等,則兩直線平行;(2)若一個四邊形是正方形,則它的四條邊相等.
設(shè)計意圖:通過復(fù)習(xí)舊知識,打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說,把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時否定,就得到新命題“同位角不相等,兩直線不平行”,這個新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時否定,就得到新命題“兩直線不平行,同位角不相等”,這個新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
(五)課堂探究:“兩條直線不平行,則同位角不相等”是否真?“若一個四邊形的四條邊不相等,則不是正方形”是否真?若原命題真,逆否命題是否也真?
學(xué)生活動:
討論后回答
這兩個逆否命題都真.
原命題真,逆否命題也真
引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說明,同學(xué)們踴躍發(fā)言。
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用vp和vq分別表示p和q否定時,四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若vp則vq;(同時否定原命題的條件和結(jié)論)
逆否命題若vq則vp。(交換原命題的條件和結(jié)論,并且同時否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真.
(2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來分析一下主人說的四句話:
第一句:“該來的沒來”
其逆否命題是“不該來的來了”,甲認(rèn)為自己是不該來的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒走”,乙認(rèn)為自己該走,所以乙也走了。
第三句:“俺說的不是你(指乙)”其值為真其非命題:“俺說的是你”為假,則說的是他(指丙)為真。所以,丙認(rèn)為說的是自己,所以丙也走了。
同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1.設(shè)原命題是“若
斷它們的真假.,則”,寫出它的逆命題、否命題與逆否命題,并分別判
2.設(shè)原命題是“當(dāng)時,若,則”,寫出它的逆命題、否定命與逆否命題,并分別判斷它們的真假.
高中數(shù)學(xué)教學(xué)設(shè)計案例篇三
1、診斷學(xué)生,做到知彼。
俗話說:“知己知彼,百戰(zhàn)百勝。”教學(xué)過程是師生互動的雙邊活動,教師要使課堂教學(xué)達(dá)到預(yù)期的目的,在進(jìn)行教學(xué)設(shè)計時先要診斷學(xué)習(xí)的真正主人——學(xué)生。在教學(xué)過程中學(xué)生原有的知識、經(jīng)驗、能力水平、個性、愛好、興趣必然影響著教學(xué)活動的展開和推進(jìn)。因此,教師要盡可能多地了解學(xué)生,關(guān)注學(xué)生的年齡特征、心理特征和差異,預(yù)測學(xué)生學(xué)習(xí)時可能遇到的思維障礙,才能時機(jī)適宜地切入新知識,使新舊知識合理地銜接起來。
2、課堂小結(jié)要與三維目標(biāo)相呼應(yīng)
三維目標(biāo)是課堂教學(xué)的出發(fā)點與歸宿,課堂小結(jié)時要回應(yīng)三維目標(biāo),要在教師引領(lǐng)下由學(xué)生合作完成小結(jié)。包括①在知識與技能方面的收獲,②教學(xué)中是怎樣研究學(xué)習(xí)新知識的,融合重點與難點的突破于其中,③提煉價值,升華感情。最后教師最好用知識網(wǎng)絡(luò)的形式給以最后的總結(jié)。
3、恰當(dāng)?shù)剡x擇教學(xué)手段
要根據(jù)教材的具體情況恰當(dāng)?shù)卦O(shè)計教學(xué)手段,力爭做到形象生動,促使教學(xué)達(dá)到最佳的效果。例如在橢圓、雙曲線和拋物線這樣的課中,用教具演示來揭示它們的定義,更具有形象性。如在指數(shù)和對數(shù)函數(shù)性質(zhì)的研究中,教師自制課件利用多媒體輔助教學(xué),使學(xué)生看到隨著底數(shù)a值的變化得到的函數(shù)和圖像的動態(tài)變化,從而對這些函數(shù)的性質(zhì)有深刻的認(rèn)識和牢固的記憶。在使用計算機(jī)輔助教學(xué)盛行的今天,教師不要忘記板書,關(guān)鍵的知識要通過板書來呈現(xiàn),使學(xué)生對知識的系統(tǒng)、結(jié)構(gòu)在腦海中留下影像。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇四
做好課堂導(dǎo)入設(shè)計
首先,可以聯(lián)系實際生活。數(shù)學(xué)知識在生活中有著廣泛的應(yīng)用,與實際生活有著廣泛的聯(lián)系,在進(jìn)行課堂導(dǎo)入設(shè)計時,教師可以聯(lián)系學(xué)生的實際生活,激發(fā)學(xué)生的好奇心。例如在學(xué)習(xí)拋物線的知識時,可以這樣導(dǎo)入:讓學(xué)生回想一下打籃球的情景,由于場地限制,在課堂上可以用乒乓球代替籃球,做投籃動作,讓學(xué)生仔細(xì)觀察籃球(乒乓球)落地時的軌跡,在學(xué)生積極參討論時,引入拋物線的知識。在導(dǎo)入中聯(lián)系實際生活,不僅能夠激發(fā)學(xué)生的興趣,并且能夠拉近學(xué)生與數(shù)學(xué)之間的距離。
其次,教師可以利用數(shù)學(xué)史進(jìn)行導(dǎo)入。數(shù)學(xué)教材中很多知識都與數(shù)學(xué)史相關(guān),學(xué)生對這部分知識充滿興趣,因此在教學(xué)過程中,教師設(shè)計課堂導(dǎo)入時可以從這一點入手,先通過提問或者介紹的方式,讓學(xué)生了解數(shù)學(xué)史上的重大事件和重要人物等,引起學(xué)生的敬佩和仰慕之情,然后引入相關(guān)的數(shù)學(xué)知識。興趣是最好的老師,在學(xué)生的期待下展開數(shù)學(xué)教學(xué),無疑會提高課堂教學(xué)效率。課堂導(dǎo)入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導(dǎo)入方式的多樣性,才能更好地激發(fā)學(xué)生的興趣,在高中數(shù)學(xué)教學(xué)中教師要根據(jù)實際情況進(jìn)行合理選擇使用。
做好課堂提問設(shè)計
首先,教師要精心設(shè)計問題。提問的目的是為了激發(fā)學(xué)生的興趣和思維,因此,教師提問的問題不能是單調(diào)、重復(fù)的,而應(yīng)該是具有啟發(fā)性和針對性,能夠激發(fā)學(xué)生的思考,引導(dǎo)學(xué)生進(jìn)行步步深入。最重要的是,教師提出的問題要符合學(xué)生的知識水平和認(rèn)知能力,教師不僅應(yīng)該了解教材,并且要全面了解學(xué)生,這樣才能使提出的問題符合學(xué)生的需要。學(xué)生的數(shù)學(xué)水平是不同的,接受能力也有差異,因此教師要注意提出問題的層次性,并針對不同水平的學(xué)生設(shè)計不同難度的問題,促進(jìn)每個學(xué)生獲得進(jìn)步和發(fā)展。
其次,課堂提問的方式要多樣化。如同教學(xué)方式需要多樣化一樣,提問的方式也要具有多樣化的特點,這樣才能更好地激發(fā)學(xué)生興趣,達(dá)到教學(xué)目的,否則,無論教師設(shè)計的問題多么巧妙,學(xué)生也會感到厭煩。根據(jù)問題的內(nèi)容和學(xué)生實際情況,提問可以是直接問答;可以是導(dǎo)思式;可以教師提問、學(xué)生回答;也可以是學(xué)生提問、教師回答。在教學(xué)過程中教師要注意培養(yǎng)學(xué)生的問題意識,鼓勵學(xué)生自己提出問題,問題是思考的開端,對于學(xué)生來說提出問題比解決問題更重要,因此,教師要為學(xué)生創(chuàng)造機(jī)會,讓學(xué)生在認(rèn)真閱讀教材的基礎(chǔ)上,根據(jù)自己的理解提出不懂的問題。提出的問題教師可以進(jìn)行點撥,讓學(xué)生思考,也可以組織學(xué)生進(jìn)行討論,培養(yǎng)學(xué)生分析問題和解決問題的能力。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇五
合理制定三維目標(biāo),明確重點與難點。
《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)》提出的三維教學(xué)目標(biāo)是:知識與技能,過程與方法,情感態(tài)度與價值觀。知識與技能目標(biāo)包括學(xué)生要知道、了解、理解的基礎(chǔ)知識、基本原理目標(biāo)和學(xué)生必須達(dá)到的基本技能目標(biāo);過程與方法目標(biāo)包括實現(xiàn)數(shù)學(xué)科學(xué)中的探究過程和探究方法、優(yōu)化學(xué)生的學(xué)習(xí)過程,強調(diào)學(xué)生探索新知識的經(jīng)歷和獲得新知識的體驗;情感態(tài)度與價值觀目標(biāo)中包括學(xué)生的學(xué)習(xí)興趣與熱情、戰(zhàn)勝困難的精神、認(rèn)識數(shù)學(xué)之美感和塑造學(xué)生的人格。三維目標(biāo)之間的關(guān)系是“在實現(xiàn)知識與技能的過程中有機(jī)地融合、滲透過程與方法目標(biāo)、情感態(tài)度與價值觀目標(biāo)的達(dá)成?!比S目標(biāo)是課堂教學(xué)活動的出發(fā)點與歸宿。
教學(xué)設(shè)計時教師要依據(jù)教材的具體內(nèi)容,結(jié)合學(xué)生的學(xué)習(xí)實際,以促進(jìn)每一個學(xué)生的發(fā)展為本,合理地制訂三維目標(biāo),注意體現(xiàn)三維目標(biāo)的整體性,相輔相成。所謂重點,指一節(jié)課中最重要的新知識,即聯(lián)動全局,帶動全面的重要之點,是學(xué)生認(rèn)知發(fā)生轉(zhuǎn)折與質(zhì)變的地方,是教學(xué)的重心所在,是課堂教學(xué)中需要解決的主要矛盾。所謂難點是一節(jié)課中學(xué)習(xí)起來最困難的地方,是學(xué)生的認(rèn)知能力與知識要求之間存在較大矛盾、知識跨越最大的地方,是學(xué)生難于理解和掌握的內(nèi)容。例如“等差數(shù)列前n項和”這節(jié)課中的重點是“等差數(shù)列前n項和公式”,難點是“等差數(shù)列前n項和公式的推導(dǎo)——倒序相加法”。只有合理制訂三維目標(biāo)和確定好重點與難點,才能圍繞三維目標(biāo)和重點與難點的突破,制定出出色的教學(xué)設(shè)計。
創(chuàng)設(shè)生活情景,使數(shù)學(xué)生活化
為學(xué)生提供充分從事數(shù)學(xué)活動和交流的機(jī)會,促使他們在自主探索的過程中真正理解和掌握基本的數(shù)學(xué)知識和技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)體驗,將數(shù)學(xué)應(yīng)用于生活,提高自主探究數(shù)學(xué)知識的能力和學(xué)生學(xué)習(xí)數(shù)學(xué)能力。
認(rèn)知最牢靠和最根深蒂固的部分就是生活中經(jīng)常接觸和經(jīng)常使用的知識,有些已經(jīng)進(jìn)入了他們的潛意識。如果能把新知識巧妙地溶于生活情境中,那將會是學(xué)生非常歡迎的,一旦接受也會被牢固掌握。而現(xiàn)代教學(xué)手段比以往更容易讓現(xiàn)實生活中的現(xiàn)象再現(xiàn)或模擬于課堂。因此,從學(xué)生的生活經(jīng)驗和知識背景出發(fā),提供學(xué)生充分進(jìn)行數(shù)學(xué)實踐活動和交流的機(jī)會課堂效果一定會很好。用與學(xué)生年齡特征相適應(yīng)的大眾化、生活化的方式呈現(xiàn)數(shù)學(xué)內(nèi)容,也是數(shù)學(xué)課程改革的一個基本思路。教師要敢于走出教材,走出課堂,走進(jìn)豐富多彩的生活。比如在引入兩個平面垂直的判定定理時,教師提出:建造一座大樓,怎樣才能使墻面與地面垂直呢?學(xué)生很快會聯(lián)想到建筑工人常常用一端系著鉛錘的細(xì)繩讓其垂直地面,并以這根繩子為參照,看看所砌的墻是否經(jīng)過這條細(xì)繩。然后問:為什么若墻面經(jīng)過這條繩子,所砌的墻就與地面垂直呢?還可以引導(dǎo)學(xué)生觀察教室門板與地面的位置關(guān)系,它們是否垂直?轉(zhuǎn)動門扇是否還與地面保持垂直,奇怪嗎?為什么?到底隱藏著數(shù)學(xué)上的什么奧秘?由這些親切真實情景,導(dǎo)出兩個平面垂直的判定定理就水到渠成了。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇六
一、學(xué)習(xí)目標(biāo)與任務(wù)
1、學(xué)習(xí)目標(biāo)描述
知識目標(biāo)
(a)理解和掌握圓錐曲線的第一定義和第二定義,并能應(yīng)用第一定義和第二定義來解題。
(b)了解圓錐曲線與現(xiàn)實生活中的聯(lián)系,并能初步利用圓錐曲線的知識進(jìn)行知識延伸和知識創(chuàng)新。
能力目標(biāo)
(a)通過學(xué)生的操作和協(xié)作探討,培養(yǎng)學(xué)生的實踐能力和分析問題、解決問題的能力。
(b)通過知識的再現(xiàn)培養(yǎng)學(xué)生的創(chuàng)新能力和創(chuàng)新意識。
(c)專題網(wǎng)站中提供各層次的例題和習(xí)題,解決各層次學(xué)生的學(xué)習(xí)過程中的各種的需要,從而培養(yǎng)學(xué)生應(yīng)用知識的能力。
德育目標(biāo)
讓學(xué)生體會知識產(chǎn)生的全過程,培養(yǎng)學(xué)生運動變化的辯證唯物主義思想。
2、學(xué)習(xí)內(nèi)容與學(xué)習(xí)任務(wù)說明
本節(jié)課的內(nèi)容是圓錐曲線的第一定義和圓錐曲線的統(tǒng)一定義,以及利用圓錐曲線的定義來解決軌跡問題和最值問題。
學(xué)習(xí)重點:圓錐曲線的第一定義和統(tǒng)一定義。
學(xué)習(xí)難點:圓錐曲線第一定義和統(tǒng)一定義的應(yīng)用。
明確本課的重點和難點,以學(xué)習(xí)任務(wù)驅(qū)動為方式,以圓錐曲線定義和定義應(yīng)用為中心,主動操作實驗、大膽分析問題和解決問題。
抓住本節(jié)課的重點和難點,采取的基于學(xué)科專題網(wǎng)站下的三者結(jié)合的教學(xué)模式,突出重點、突破難點。
充分利用《圓錐曲線》專題網(wǎng)站內(nèi)的內(nèi)容,在著重學(xué)習(xí)內(nèi)容的基礎(chǔ)上,內(nèi)延外拓,培養(yǎng)學(xué)生的創(chuàng)新精神和克服困難的信心。
二、學(xué)習(xí)者特征分析
(說明學(xué)生的學(xué)習(xí)特點、學(xué)習(xí)習(xí)慣、學(xué)習(xí)交往特點等)
l本課的學(xué)習(xí)對象為高二下學(xué)期學(xué)生,他們經(jīng)過近兩年的高中學(xué)習(xí),已經(jīng)有一定的學(xué)習(xí)基礎(chǔ)和分析問題、解決問題的能力,基本的計算機(jī)操作較為熟練。
高二年下學(xué)期學(xué)生由于高考的壓力,他們保持著傳統(tǒng)教學(xué)的學(xué)習(xí)習(xí)慣,在
l課堂上的主體作用的體現(xiàn)不是太充分,但是如果他們還是樂于嘗試、勇于探索的。
高二年的學(xué)生在學(xué)習(xí)交往上“個別化學(xué)習(xí)”和“協(xié)作討論學(xué)習(xí)”并存,也就是說學(xué)生是具有一定的群體性小組交流能力與協(xié)同討論學(xué)習(xí)能力的,還是能完成上課時教師布置的協(xié)作學(xué)習(xí)任務(wù)的。
三、學(xué)習(xí)環(huán)境選擇與學(xué)習(xí)資源設(shè)計
1.學(xué)習(xí)環(huán)境選擇(打√)
(1)web教室(√)(2)局域網(wǎng)(3)城域網(wǎng)(4)校園網(wǎng)(√)(5)internet(√)
(6)其它
2、學(xué)習(xí)資源類型(打√)
(1)課件(網(wǎng)絡(luò)課件)(√)(2)工具(3)專題學(xué)習(xí)網(wǎng)站(√)(4)多媒體資源庫
(5)案例庫(6)題庫(7)網(wǎng)絡(luò)課程(8)其它
3、學(xué)習(xí)資源內(nèi)容簡要說明
(說明名稱、網(wǎng)址、主要內(nèi)容等)
高中數(shù)學(xué)教學(xué)設(shè)計案例篇七
創(chuàng)設(shè)實驗情境,培養(yǎng)數(shù)學(xué)創(chuàng)新能力和實踐能力
高中數(shù)學(xué)教學(xué)應(yīng)鼓勵學(xué)生用數(shù)學(xué)去解決問題,甚至去探索一些數(shù)學(xué)本身的問題。教學(xué)中,教師不僅要培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评砟芰?、空間想象能力和運算能力,還要培養(yǎng)學(xué)生數(shù)學(xué)建模能力與數(shù)據(jù)處理能力,加強在“用數(shù)學(xué)”方面的教育。最好的方式就是用多媒體電腦和諸如《幾何畫板》、《幾何畫王》、《幾何專家》等工具軟件,為學(xué)生創(chuàng)設(shè)數(shù)學(xué)實驗情境。例如,在上“棱柱和異面直線”課時,我們指導(dǎo)學(xué)生用硬紙制作“長方體”和“正三棱柱”等模型。教師用《幾何畫板》設(shè)計并創(chuàng)作“長方體中的異面直線”課件,引導(dǎo)學(xué)生利用自己制作的“長方體”模型和上述課件,思考以下問題:“長方體中所有體對角線(4條)與所有面對角線(12條)共組成多少對異面直線?”、“長方體中所有體對角線(4條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有棱(12條)之間相互組成多少對異面直線?”、“長方體所有面對角線(12條)與所有棱(12條)共組成多少對異面直線?”、“長方體中所有面對角線(12條)之間相互組成多少對異面直線?”。然后由學(xué)生獨立進(jìn)行數(shù)學(xué)實驗,探討上述問題。
此外,教師還要根據(jù)數(shù)學(xué)思想發(fā)展脈絡(luò),充分利用實驗手段尤其是運用現(xiàn)代教育技術(shù),創(chuàng)設(shè)教學(xué)實驗情景、設(shè)計系列問題、增加輔助環(huán)節(jié),有助于引導(dǎo)學(xué)生通過操作、實踐,探索數(shù)學(xué)定理的證明和數(shù)學(xué)問題的解決方法,讓學(xué)生親自體驗數(shù)學(xué)建模過程,培養(yǎng)學(xué)生的數(shù)學(xué)創(chuàng)新能力和實踐能力,提高數(shù)學(xué)素養(yǎng)。
巧設(shè)情境,增加學(xué)生的投入感
為了構(gòu)建生動活潑富有個性的數(shù)學(xué)課堂,我把創(chuàng)設(shè)情境,激發(fā)學(xué)生的學(xué)習(xí)興趣當(dāng)成數(shù)學(xué)教學(xué)的重頭戲,使之成為數(shù)學(xué)課的一道亮麗的風(fēng)景。 《數(shù)學(xué)課程標(biāo)準(zhǔn)》強調(diào)數(shù)學(xué)課堂教學(xué)必須注意從學(xué)生熟悉的生活情境和感興趣的事物出發(fā),使學(xué)生有更多的機(jī)會從周圍熟悉的事物中學(xué)習(xí)數(shù)學(xué),理解數(shù)學(xué),讓學(xué)生感受到數(shù)學(xué)就在他們周圍。因此,我從學(xué)生已有的生活經(jīng)驗出發(fā),創(chuàng)設(shè)有趣的教學(xué)情境,強化學(xué)生的感性認(rèn)識,豐富學(xué)生的學(xué)習(xí)過程,引導(dǎo)學(xué)生在情境中觀察、操作、交流,感受數(shù)學(xué)與日常生活的密切聯(lián)系,感受數(shù)學(xué)在生活中的作用,加深對數(shù)學(xué)的理解,并運用數(shù)學(xué)知識解決現(xiàn)實生活中的問題。如《課程標(biāo)準(zhǔn)》在綜合實踐的教學(xué)建議部分提供了這樣一個案例:
要求學(xué)生統(tǒng)計自己家庭一周內(nèi)丟棄的塑料袋個數(shù),并依據(jù)所收集的數(shù)據(jù)展開討論。其程序是:(1)作為家庭作業(yè)提出此問題;(2)學(xué)生自主進(jìn)行統(tǒng)計活動;(3)請某學(xué)生在課堂上對結(jié)果做現(xiàn)場統(tǒng)計(列出統(tǒng)計表,老師也把自己的統(tǒng)計結(jié)果融入其中);(4)統(tǒng)計分析(引導(dǎo)學(xué)生根據(jù)數(shù)據(jù)對全班一周丟棄塑料袋情況用不同的算法進(jìn)行描述和評價);(5)結(jié)合問題情境深入領(lǐng)會有關(guān)概念(如平均數(shù)、中位數(shù)、眾數(shù)等)的含義,并通過問題的層層深入讓學(xué)生進(jìn)一步感受不同統(tǒng)計量來表示同一問題的必要性;(6)問題自然延伸(計算這些袋對土地造成的污染,先估計一個袋的污染,然后通過多種方式計算推及到一周呢?一年呢?全校同學(xué)的家庭呢?照此速度要多久就會污染整個學(xué)校呢?)。由此例可以看出,這種模式的一個關(guān)鍵點就是圍繞著學(xué)生日常生活來展開的,由學(xué)生身邊的事所引出的數(shù)學(xué)問題,使學(xué)生體會到數(shù)學(xué)與生活的緊密和諧關(guān)系,樸素的問題情境自然讓學(xué)生產(chǎn)生一種情感上的親和力和感召力,可以讓他們真正應(yīng)用數(shù)學(xué),并引導(dǎo)他們學(xué)會做事。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇八
一、問題導(dǎo)入,引發(fā)探究
師:我在旅游時買回來一種磁性蛇蛋玩具(如圖),所謂生活處處皆學(xué)問嘛,我把它運動過程中的軸截面用圖形計算器做出了以下有趣的現(xiàn)象:
兩個全等的橢圓形卵,相互依偎旋轉(zhuǎn)(動畫)。你能通過所學(xué)解析幾何知識,構(gòu)造出這種有趣的現(xiàn)象嗎?
二、實驗探究,交流發(fā)現(xiàn)
探究1:卵之由來——橢圓的形成
(1)單個定橢圓的形成
橢圓的定義:平面內(nèi)到兩定點、的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。(即若平面內(nèi)的動點到兩定點、的距離之和等于常數(shù)(大于),則點的軌跡為以、為焦點的橢圓。)
思考1:如何使為定值?
(不妨將兩條線段的長度和轉(zhuǎn)化為一條線段,即在線段的延長線上取點,使得,此時,為定值則可轉(zhuǎn)化為為定值。)
思考2:若為定值,則點的軌跡是什么?定點與點軌跡的位置關(guān)系?
(以定點為圓心,為半徑的圓。由于>,則點在圓內(nèi)。)
思考3:如何確定點的位置,使得,且?
(線段的中垂線與線段的交點為點。)
揭示思路來源:(高中數(shù)學(xué)選修2-1p497)如圖,圓的半徑為定長,是圓內(nèi)一個定點,是圓上任意一點,線段的垂直平分線l和半徑相交于點,當(dāng)點在圓上運動時,點的軌跡是什么?為什么?
(設(shè)圓的半徑為,由橢圓定義,(常數(shù)),且,所以當(dāng)點在圓周上運動時,點的軌跡是以為焦點的橢圓。)
圖形計算器作圖驗證:以圓與定點所在直線為軸,中垂線為軸建立直角坐標(biāo)系,設(shè)圓半徑,,即圓,點,則點軌跡是以以為焦點的橢圓,橢圓方程為。
(2)單個動橢圓的形成
思考4:構(gòu)造一種動橢圓的方式
(由于橢圓形狀不變,即離心率不變,而長軸長為定值,則也要為定值,因此可將圓內(nèi)點取在圓的同心圓上,當(dāng)點在圓上動時,即可得到動橢圓。)
圖形計算器作圖驗證:當(dāng)圓內(nèi)動點取在圓的同心圓上,運動點,即得到動橢圓。
(3)兩個橢圓的形成
觀察兩個橢圓相互依偎旋轉(zhuǎn)的幾個畫面,分析兩橢圓的位置關(guān)系。判斷兩個橢圓關(guān)于對稱軸對稱,且直線過兩橢圓公共點,所以直線為兩橢圓的公切線。
因而找到公切線,作橢圓關(guān)于切線的對稱橢圓即可。
探究2:卵之所依——切線的判斷與證明
線段的垂直平分線與橢圓的位置關(guān)系
(1)利用圖形計算器中的“圖象分析”工具直觀判斷與橢圓的位置關(guān)系.設(shè)圓上動點,則線段的中垂線的方程為,將動點的橫坐標(biāo)保存為變量,縱坐標(biāo)保存為變量,隨著點的改變,在graphs中畫出相應(yīng)的動直線.用圖形計算器中的“圖象分析”工具找出橢圓所在區(qū)域內(nèi)的直線與橢圓的交點,拖動點,動態(tài)觀測交點個數(shù)的變化,發(fā)現(xiàn)無論點在何處,動直線與橢圓只有一個交點,因此判斷直線與橢圓相切,并可求出該切點的坐標(biāo).也可以將橢圓方程與直線方程聯(lián)立,用“代數(shù)”工具中的solve求出方程組的解,從而判斷根的情況.
(2)證明橢圓與直線相切.
不妨設(shè)直線:,其中,,與橢圓方程聯(lián)立,得,因此
,
將,,代入上式,用“代數(shù)”工具中的expand()化簡式子,得,所以橢圓與直線相切,切點為.
(3)證明由任意圓上的動點和圓內(nèi)一點確定的橢圓與線段中垂線均相切(反證法)
因為橢圓是點的軌跡,而點是直線與線段中垂線的交點,所以點既在橢圓上,也在直線上。因此,直線與橢圓至少有一個公共點,即直線與橢圓相切或相交。
假設(shè)直線與橢圓相交,設(shè)另一個交點為(與不重合).因為,所以;又因為,
所以為定值,而,矛盾.因此直線與橢圓相切。
探究3:兩卵相依——對稱旋轉(zhuǎn)橢圓的形成與動畫
當(dāng)圓內(nèi)動點取在圓的同心圓上,作橢圓關(guān)于切線的對稱橢圓,運動點,隱藏相關(guān)坐標(biāo)系與輔助圓等圖形,呈現(xiàn)兩卵相互依偎旋轉(zhuǎn)的有趣效果。
改變一些問題條件,進(jìn)行深入探究與發(fā)現(xiàn)。
探究4:改變點位置,探究點軌跡
(1)曲線判斷:利用ti圖形計算器作圖分析,拖動點,當(dāng)點在定圓內(nèi)且不與圓心重合時,交點的軌跡是橢圓;當(dāng)點在定圓外時,則,交點的軌跡是雙曲線;當(dāng)點與圓心重合時,點的軌跡是圓的同心圓;當(dāng)點在圓周上時,點的軌跡是是一點(圓心).
(2)方程證明:圓,設(shè)點,可解得點的軌跡方程為
當(dāng)或時,點的軌跡為圓心;
當(dāng)且時,點的軌跡方程為
當(dāng)時,點的軌跡為圓:;
當(dāng)且時,點的軌跡為橢圓;
當(dāng)或時,點的軌跡為雙曲線。
探究5:改變切線位置,探究由切線得到的包絡(luò)圖形
查閱有關(guān)參考書籍,了解圓錐曲線的包絡(luò)線,并利用圖形計算器作出橢圓、雙曲線的包絡(luò)圖形,自主探究拋物線的包絡(luò)線(將定圓改為定直線)。
結(jié)論:所謂包絡(luò)圖,就是指有一條曲線按照一定運動規(guī)律運動,保留其所有瞬間位置的影像,會有一條曲線能夠和該運動曲線所有位置相切,這條曲線就成為該運動曲線的包絡(luò)線。
探究6:拓展延伸:橢圓切線的幾個性質(zhì)及其應(yīng)用
性質(zhì)1:是橢圓的兩個焦點,若點是橢圓上異于長軸兩端點的任一點,則點的切線平分的外角。
性質(zhì)1′:點處的法線(過點且垂直于切線)平分。(即為橢圓的光學(xué)性質(zhì):從橢圓的一個焦點發(fā)出的光線,經(jīng)過橢圓反射后,反射光線交于橢圓的另一個焦點上。)
課后探究:閱讀數(shù)學(xué)選修2-1p75閱讀與思考——圓錐曲線的光學(xué)性質(zhì)及其應(yīng)用,了解雙曲線、拋物線的光學(xué)性質(zhì)。
練習(xí)1:已知為橢圓的左、右焦點,點為橢圓上任一點,過焦點向作垂線,垂足為,則點的軌跡是_____________,軌跡方程是_______________。
解:(1)直觀判斷:作軌跡
(2)嚴(yán)謹(jǐn)證明:圓的定義
由此得到:
性質(zhì)2:是橢圓的兩個焦點,是長軸的兩個端點,過橢圓上異于的任一點的切線,過做切線的垂線,垂足分別為,則在以長軸為直徑的圓上。
練習(xí)2:已知為橢圓的左、右焦點,點為橢圓上任一點,直線與橢圓相切與點,且到的垂線長分別為,求證:為定值。
解:(1)直觀判斷:作圖
(2)嚴(yán)謹(jǐn)證明:利用性質(zhì)2及圓的相交弦性質(zhì),
由此得到:
性質(zhì)3:已知橢圓為,則焦點到橢圓任一切線的垂線長乘積等于。
課后探究2:已知為橢圓的左、右焦點,點為橢圓上任一點,直線過點,且到的垂線長分別為,則
①當(dāng)時,直線與橢圓的位置關(guān)系;(相交)
②當(dāng)時,直線與橢圓的位置關(guān)系。(相離)
(類比直線與圓位置關(guān)系的幾何法,此為直線與橢圓位置關(guān)系的幾何法)
課后探究:雙曲線、拋物線的切線是否有類似性質(zhì)?
高中數(shù)學(xué)教學(xué)設(shè)計案例篇九
創(chuàng)設(shè)問題情境,精心設(shè)計,創(chuàng)造學(xué)生參與的機(jī)會
通過課堂教學(xué)使學(xué)生在知識與技能、過程與方法、情感態(tài)度與價值觀三維目標(biāo)獲得協(xié)調(diào)發(fā)展,這是《大綱》中也明確了的。說得通俗一點,課堂教學(xué)是否有效的標(biāo)準(zhǔn):在一定的時段內(nèi),學(xué)生學(xué)到了什么?學(xué)到什么程度?怎樣學(xué)的?學(xué)完以后對數(shù)學(xué)的態(tài)度是更熱愛?還是變得更討厭了呢?
[案例1]在講雙曲線時,應(yīng)打破以往的給一個知識點,做一道習(xí)題的做法。例如:方程x2/a2 - y2 /16=1,設(shè)問:①此方程表示雙曲線嗎? ②你能添加一個條件求出雙曲線方程嗎?這種開放性問題的設(shè)置給學(xué)生創(chuàng)造了較廣泛的思維空間,讓他們有東西可想,有內(nèi)容可說。這樣,整節(jié)課都是學(xué)生思考、討論、動筆的過程,很好地調(diào)動了學(xué)生的學(xué)習(xí)積極性,達(dá)到了教學(xué)目標(biāo)。
創(chuàng)設(shè)實驗情境,培養(yǎng)數(shù)學(xué)創(chuàng)新能力和實踐能力
高中數(shù)學(xué)教學(xué)應(yīng)鼓勵學(xué)生用數(shù)學(xué)去解決問題,甚至去探索一些數(shù)學(xué)本身的問題。教學(xué)中,教師不僅要培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)倪壿嬐评砟芰?、空間想象能力和運算能力,還要培養(yǎng)學(xué)生數(shù)學(xué)建模能力與數(shù)據(jù)處理能力,加強在“用數(shù)學(xué)”方面的教育。在數(shù)列一章中的實習(xí)作業(yè)中安排了對購房,購車的分期付款的消費題材,是一個非常好的培養(yǎng)學(xué)生數(shù)學(xué)建模能力與數(shù)據(jù)處理能力的題材,要讓學(xué)生去實踐,實驗,寫出實驗報告,學(xué)生對數(shù)學(xué)知識的理解就更深了。 教學(xué)中,教師通過精心設(shè)計教學(xué)程序,創(chuàng)設(shè)多種教學(xué)情景來激發(fā)學(xué)生的學(xué)習(xí)情感。在教學(xué)過程中,師生之間、學(xué)生之間充分地互相交流,民主地、和諧地、理智地參與教學(xué)過程,這正是師生相互作用的最佳形式,因而也是發(fā)揮教學(xué)整體效益的可靠保證。
數(shù)學(xué)中的概念、公式、性質(zhì)、定理等是解決數(shù)學(xué)問題的基礎(chǔ),盡管這些概念、公式、性質(zhì)、定理產(chǎn)前人思維的成果,但是,學(xué)生對其的學(xué)習(xí)仍需一個“認(rèn)知、吸收、深化”的過程,為此,教師在教學(xué)中要立足于學(xué)生的思維水平及其發(fā)展規(guī)律,提示概念、公式、性質(zhì)、定理等的提出過程及其探索、抽象、概括的過程,使學(xué)生再經(jīng)歷一次“數(shù)學(xué)家”的思維過程。
高中數(shù)學(xué)教學(xué)設(shè)計案例篇十
一、復(fù)習(xí)引入:
1.簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2.教材中的章頭引言;
3.集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(p4)
二、講解新課:
閱讀教材第一部分,問題如下:
(1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點、一些圖形、一些整式、一些物體、一些人組成的.我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集.集合中的每個對象叫做這個集合的元素.
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
(1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
(1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作n,
(2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的集 記作n*或n+
(3)整數(shù)集:全體整數(shù)的集合 記作z ,
(4)有理數(shù)集:全體有理數(shù)的集合 記作q ,
(5)實數(shù)集:全體實數(shù)的集合 記作r
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負(fù)整數(shù)集內(nèi)排除0的集 記作n*或n+ q、z、r等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成z*
3、元素對于集合的隸屬關(guān)系
(1)屬于:如果a是集合a的元素,就說a屬于a,記作a∈a
(2)不屬于:如果a不是集合a的元素,就說a不屬于a,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可
(2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗?
5、⑴集合通常用大寫的拉丁字母表示,如a、b、c、p、q…… 元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的開口方向,不能把a∈a顛倒過來寫
三、練習(xí)題:
1、教材p5練習(xí)1、2
2、下列各組對象能確定一個集合嗎?
(1)所有很大的實數(shù) (不確定)
(2)好心的人 (不確定)
(3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實數(shù),那么 可能取的值組成集合的元素是_-2,0,2__
4、由實數(shù)x,-x,|x|, 所組成的集合,最多含( a )
(a)2個元素 (b)3個元素 (c)4個元素 (d)5個元素
5、設(shè)集合g中的元素是所有形如a+b (a∈z, b∈z)的數(shù),求證:
(1) 當(dāng)x∈n時, x∈g;
(2) 若x∈g,y∈g,則x+y∈g,而 不一定屬于集合g
證明(1):在a+b (a∈z, b∈z)中,令a=x∈n,b=0, 則x= x+0* = a+b ∈g,即x∈g
證明(2):∵x∈g,y∈g,
∴x= a+b (a∈z, b∈z),y= c+d (c∈z, d∈z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈z, b∈z,c∈z, d∈z
∴(a+c) ∈z, (b+d) ∈z
∴x+y =(a+c)+(b+d) ∈g,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合g