在日常的學(xué)習(xí)、工作、生活中,肯定對各類范文都很熟悉吧。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
一元 二次方程 一元二次方程精講篇一
1. 了解整式方程和的概念;
2. 知道的一般形式,會把化成一般形式。
3. 通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
建議:
1.? 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
2)重點、難點分析
理解的定義:
是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
目的
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
難點和難點:
重點:
1.的有關(guān)概念
2.會把化成一般形式
難點: 的含義.
第 1 2 頁 ?
一元 二次方程 一元二次方程精講篇二
1. 了解整式方程和的概念;
2. 知道的一般形式,會把化成一般形式。
3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學(xué)建議:
1.? 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
2)重點、難點分析
理解的定義:
是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
教學(xué)目的
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:
1.的有關(guān)概念
2.會把化成一般形式
難點: 的含義.
設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程?? (???? x(x十5)=150??? )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說首先必須是一個整式方程,但是一個整式方程未必就是一個、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做.(板書的定義)
3.強化的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是?
(1)3x十2=5x—3:? (2)x2=4
(2)(x十3)(3x·4)=(x十2)2;? (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4. 概念的延伸
提問:很多嗎?你有辦法一下寫出所有的嗎?
引導(dǎo)學(xué)生回顧的定義,分析項的情況,啟發(fā)學(xué)生運用字母,找到的一般形式
ax2+bx+c=0?? (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o? (2)x2—3x十4=0;? (3)3x2-5=0
(4)4x2十3x—2=0;? (5)3x2—5=0;?????? (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;? (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè)?:略
一元 二次方程 一元二次方程精講篇三
教學(xué)目標(biāo)?:(1)理解的概念
(2)掌握的一般形式,會判斷的二次項系數(shù)、一次項系數(shù)和常數(shù)項。
(2)會用因式分解法解
教學(xué)重點:的概念、的一般形式
教學(xué)難點?:因式分解法解
教學(xué)過程?:
(一)創(chuàng)設(shè)情景,引入新課
實際例子引入:列出的方程分別為x-7x+8=0,(x-7)(x+1)=89,x+8x-9=0
由學(xué)生說出這幾個方程的共同特征,從而引出的概念。
(二)新授
1:的概念。(一個未知數(shù)、最高次2次、等式兩邊都是整式)
練習(xí)
2:的一般形式(形如ax+bx+c=0)
任一個都可以轉(zhuǎn)化成一般形式,注意二次項系數(shù)不為零
3:講解例子
4:利用因式分解法解
5:講解例子
6:一般步驟
練習(xí)
(三)小結(jié)
(四)布置作業(yè)?
板書設(shè)計?
一元 二次方程 一元二次方程精講篇四
22.1? 一元二次方程
第一課時
教學(xué)內(nèi)容
一元二次方程概念及一元二次方程一般式及有關(guān)概念.
教學(xué)目標(biāo)
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;應(yīng)用一元二次方程概念解決一些簡單題目.
1.通過設(shè)置問題,建立數(shù)學(xué)模型,模仿一元一次方程概念給一元二次方程下定義.
2.一元二次方程的一般形式及其有關(guān)概念.
3.解決一些概念性的題目.
4.態(tài)度、情感、價值觀
4.通過生活學(xué)習(xí)數(shù)學(xué),并用數(shù)學(xué)解決生活中的問題來激發(fā)學(xué)生的學(xué)習(xí)熱情.
重難點關(guān)鍵
1.重點:一元二次方程的概念及其一般形式和一元二次方程的有關(guān)概念并用這些概念解決問題.
2.難點關(guān)鍵:通過提出問題,建立一元二次方程的數(shù)學(xué)模型,再由一元一次方程的概念遷移到一元二次方程的概念.
教學(xué)過程
一、復(fù)習(xí)引入
學(xué)生活動:列方程.
問題(1)《九章算術(shù)》“勾股”章有一題:“今有戶高多于廣六尺八寸,兩隅相去適一丈,問戶高、廣各幾何?”
大意是說:已知長方形門的高比寬多6尺8寸,門的對角線長1丈,那么門的高和寬各是多少?
如果假設(shè)門的高為x尺,那么,這個門的寬為_______尺,根據(jù)題意,得________.
整理、化簡,得:__________.
問題(2)如圖,如果 ,那么點c叫做線段ab的黃金分割點.
如果假設(shè)ab=1,ac=x,那么bc=________,根據(jù)題意,得:________.
整理得:_________.
問題(3)有一面積為54m2的長方形,將它的一邊剪短5m,另一邊剪短2m,恰好變成一個正方形,那么這個正方形的邊長是多少?
如果假設(shè)剪后的正方形邊長為x,那么原來長方形長是________,寬是_____,根據(jù)題意,得:_______.
整理,得:________.
老師點評并分析如何建立一元二次方程的數(shù)學(xué)模型,并整理.
二、探索新知
學(xué)生活動:請口答下面問題.
(1)上面三個方程整理后含有幾個未知數(shù)?
(2)按照整式中的多項式的規(guī)定,它們最高次數(shù)是幾次?
(3)有等號嗎?或與以前多項式一樣只有式子?
老師點評:(1)都只含一個未知數(shù)x;(2)它們的最高次數(shù)都是2次的;(3)都有等號,是方程.
因此,像這樣的方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的最高次數(shù)是2(二次)的方程,叫做一元二次方程.
一般地,任何一個關(guān)于x的一元二次方程,經(jīng)過整理,都能化成如下形式ax2+bx+c=0(a≠0).這種形式叫做一元二次方程的一般形式.
一個一元二次方程經(jīng)過整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次項,a是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.
例1.將方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并寫出其中的二次項系數(shù)、一次項系數(shù)及常數(shù)項.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必須運用整式運算進行整理,包括去括號、移項等.
解:去括號,得:
40-16x-10x+4x2=18
移項,得:4x2-26x+22=0
其中二次項系數(shù)為4,一次項系數(shù)為-26,常數(shù)項為22.
例2.(學(xué)生活動:請二至三位同學(xué)上臺演練)? 將方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并寫出其中的二次項、二次項系數(shù);一次項、一次項系數(shù);常數(shù)項.
分析:通過完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括號,得:
x2+2x+1+x2-4=1
移項,合并得:2x2+2x-4=0
其中:二次項2x2,二次項系數(shù)2;一次項2x,一次項系數(shù)2;常數(shù)項-4.
三、鞏固練習(xí)
教材p32? 練習(xí)1、2
四、應(yīng)用拓展
例3.求證:關(guān)于x的方程(m2-8m+17)x2+2mx+1=0,不論m取何值,該方程都是一元二次方程.
分析:要證明不論m取何值,該方程都是一元二次方程,只要證明m2-8m+17≠0即可.
證明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不論m取何值,該方程都是一元二次方程.
五、歸納小結(jié)(學(xué)生總結(jié),老師點評)
本節(jié)課要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次項、二次項系數(shù),一次項、一次項系數(shù),常數(shù)項的概念及其它們的運用.
六、布置作業(yè)
1.教材p34 習(xí)題22.1? 1、2.
2.選用作業(yè)設(shè)計.
一元 二次方程 一元二次方程精講篇五
目標(biāo)
1. 了解整式方程和的概念;
2. 知道的一般形式,會把化成一般形式。
3. 通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
建議:
1.? 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
2)重點、難點分析
理解的定義:
是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
目的
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的,初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
難點和難點:
重點:
1.的有關(guān)概念
2.會把化成一般形式
難點: 的含義.
過程設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程?? (???? x(x十5)=150??? )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說首先必須是一個整式方程,但是一個整式方程未必就是一個、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做.(的定義)
3.強化的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是?
(1)3x十2=5x—3:? (2)x2=4
(2)(x十3)(3x·4)=(x十2)2;? (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4. 概念的延伸
提問:很多嗎?你有辦法一下寫出所有的嗎?
引導(dǎo)學(xué)生回顧的定義,分析項的情況,啟發(fā)學(xué)生運用字母,找到的一般形式
ax2+bx+c=0?? (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o? (2)x2—3x十4=0;? (3)3x2-5=0
(4)4x2十3x—2=0;? (5)3x2—5=0;?????? (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;? (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè)?:略
一元 二次方程 一元二次方程精講篇六
1. 了解整式方程和的概念;
2. 知道的一般形式,會把化成一般形式。
3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學(xué)建議:
1.? 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
2)重點、難點分析
理解的定義:
是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
教學(xué)目的
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:
1.的有關(guān)概念
2.會把化成一般形式
難點: 的含義.
設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程?? (???? x(x十5)=150??? )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說首先必須是一個整式方程,但是一個整式方程未必就是一個、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做.(板書的定義)
3.強化的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是?
(1)3x十2=5x—3:? (2)x2=4
(2)(x十3)(3x·4)=(x十2)2;? (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4. 概念的延伸
提問:很多嗎?你有辦法一下寫出所有的嗎?
引導(dǎo)學(xué)生回顧的定義,分析項的情況,啟發(fā)學(xué)生運用字母,找到的一般形式
ax2+bx+c=0?? (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o? (2)x2—3x十4=0;? (3)3x2-5=0
(4)4x2十3x—2=0;? (5)3x2—5=0;?????? (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;? (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè)?:略
一元 二次方程 一元二次方程精講篇七
1. 了解整式方程和的概念;
2. 知道的一般形式,會把化成一般形式。
3. 通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:的概念和它的一般形式。
難點:對的一般形式的正確理解及其各項系數(shù)的確定。
教學(xué)建議:
1.? 教材分析:
1)知識結(jié)構(gòu):本小節(jié)首先通過實例引出的概念,介紹了的一般形式以及中各項的名稱。
2)重點、難點分析
理解的定義:
是 的重要組成部分。方程 ,只有當(dāng) 時,才叫做。如果 且 ,它就是了。解題時遇到字母系數(shù)的方程可能出現(xiàn)以下情況:
(1)的條件是確定的,如方程 ( ),把它化成一般形式為 ,由于 ,所以 ,符合的定義。
(2)條件是用“關(guān)于 的”這樣的語句表述的,那么它就隱含了二次項系數(shù)不為零的條件。如“關(guān)于 的 ”,這時題中隱含了 的條件,這在解題中是不能忽略的。
(3)方程中含有字母系數(shù)的 項,且出現(xiàn)“關(guān)于 的方程”這樣的語句,就要對方程中的字母系數(shù)進行討論。如:“關(guān)于 的方程 ”,這就有兩種可能,當(dāng) 時,它是一元一次方程 ;當(dāng) 時,它是,解題時就會有不同的結(jié)果。
教學(xué)目的
1.了解整式方程和的概念;
2.知道的一般形式,會把化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生的興趣。
和難點:
重點:
1.的有關(guān)概念
2.會把化成一般形式
難點: 的含義.
設(shè)計
一、引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程?? (???? x(x十5)=150??? )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說首先必須是一個整式方程,但是一個整式方程未必就是一個、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做.(板書的定義)
3.強化的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是?
(1)3x十2=5x—3:? (2)x2=4
(2)(x十3)(3x·4)=(x十2)2;? (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4. 概念的延伸
提問:很多嗎?你有辦法一下寫出所有的嗎?
引導(dǎo)學(xué)生回顧的定義,分析項的情況,啟發(fā)學(xué)生運用字母,找到的一般形式
ax2+bx+c=0?? (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o? (2)x2—3x十4=0;? (3)3x2-5=0
(4)4x2十3x—2=0;? (5)3x2—5=0;?????? (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;? (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道的一般形式ax2十bx十c=0(a≠0)并且注意的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè)?:略
一元 二次方程 一元二次方程精講篇八
【教學(xué)目的】? 精選學(xué)生在解一元二次方程有關(guān)問題時出現(xiàn)的典型錯例加以剖析,幫助學(xué)生找出產(chǎn)生錯誤的原因和糾正錯誤的方法,使學(xué)生在解題時少犯錯誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。
1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時,方程為一元一次方程;當(dāng) a_____時,方程為一元二次方程。
2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時,方程有兩個相等的實數(shù)根,當(dāng)△_______時,方程有兩個不相等的實數(shù)根,當(dāng)△________時,方程沒有實數(shù)根。
例1?? 下列方程中兩實數(shù)根之和為2的方程是
(a)?? x2+2x+3=0???? (b) x2-2x+3=0??? (c)? x2-2x-3=0????? (d)? x2+2x+3=0
錯答:
c
錯因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選又考慮到方程有實數(shù)根,故由△可知,方程無實數(shù)根,方程c合適。
例2 ??若關(guān)于x的方程x2+2(k+2)x+k2=0? 兩個實數(shù)根之和大于-4,則k的取值范圍是(???? )
(a)?? k>-1??? ?(b)? k<0?? ?(c) -1< k<0??? (d) -1≤k<0
錯解 :
d
錯因剖析:漏掉了方程有實數(shù)根的前提是△≥0
例3(2000廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個不相等的實根,求k的取值范圍。
錯解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得? k<2又∵k+1≥0∴k≥ -1。即 k的取值范
圍是 -1≤k<2
錯因剖析:漏掉了二次項系數(shù)1-2k≠0這個前提。事實上,當(dāng)1-2k=0即k= 時,原方程變?yōu)橐淮畏匠?,不可能有兩個實根。
正解: -1≤k<2且k≠
例4??????????? ?(2002山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個實數(shù)根,當(dāng)x12+x22=15時,求m的值。
錯解:由根與系數(shù)的關(guān)系得
x1+x2= -(2m+1),??? x1x2=m2+1,
∵x12+x22=(x1+x2)2-2 x1x2
=[-(2m+1)]2-2(m2+1)
=2 m2+4 m-1
又∵ x12+x22=15
∴ 2 m2+4 m-1=15
∴ m1 = -4? ?m2 = 2
錯因剖析:漏掉了一元二次方程有兩個實根的前提條件是判別式△≥0。因為當(dāng)m = -4時,方程為x2-7x+17=0,此時△=(-7)2-4×17×1=? -19<0,方程無實數(shù)根,不符合題意。
m = 2
例5 ??若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實數(shù)根,求m的取值范圍。
錯解:△=[-2(m+2)]2-4(m2-1) =16 m+20
∵ △≥0
∴ 16 m+20≥0,
∴ m≥ -5/4
又 ∵ m2-1≠0,
∴? m≠±1
∴ m的取值范圍是m≠±1且m≥ -
:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時,即m=±1時,方程變?yōu)橐辉淮畏匠?,仍有實?shù)根。
m的取值范圍是m≥- ?
例6? 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負數(shù),求方程的整數(shù)根。
錯解:∵方程有整數(shù)根,
∴△=9-4a>0,則a<2.25
又∵a是非負數(shù),∴a=1或a=2
令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2
∴方程的整數(shù)根是x1= -1, x2= -2
:概念模糊。非負整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時,還可以求出方程的另兩個整數(shù)根,x3=0, x4= -3
方程的整數(shù)根是x1= -1, x2= -2 ,? x3=0, x4= -3
【練習(xí)】
練習(xí)1、(01濟南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個不相等的實數(shù)根x1、x2。(1)求k的取值范圍;(2)是否存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請說明理由。
解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0????? 解得k<
∴當(dāng)k< 時,方程有兩個不相等的實數(shù)根。
(2)存在。如果方程的兩實數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,
解得k= 。經(jīng)檢驗k= 是方程- 的解。
∴當(dāng)k= 時,方程的兩實數(shù)根x1、x2互為相反數(shù)。
讀了上面的解題過程,請判斷是否有錯誤?如果有,請指出錯誤之處,并直接寫出正確答案。
解:上面解法錯在如下兩個方面:
(1)漏掉k≠0,正確答案為:當(dāng)k< 時且k≠0時,方程有兩個不相等的實數(shù)根。
(2)k= 。不滿足△>0,正確答案為:不存在實數(shù)k,使方程的兩實數(shù)根互為相反數(shù)
練習(xí)2(02廣州市)當(dāng)a取什么值時,關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實數(shù)根 ?
解:(1)當(dāng)a=0時,方程為4x-1=0,∴x=
(2)當(dāng)a≠0時,∵△=16+4a≥0?? ∴a≥ -4
∴當(dāng)a≥ -4且a≠0時,方程有實數(shù)根。
又因為方程只有正實數(shù)根,設(shè)為x1,x2,則:
x1+x2=- >0 ;
x1. x2=- >0????? 解得 :a<0
綜上所述,當(dāng)a=0、a≥ -4、a<0時,即當(dāng)-4≤a≤0時,原方程只有正實數(shù)根。
【小結(jié)】 以上數(shù)例,說明我們在求解有關(guān)二次方程的問題時,往往急于尋求結(jié)論而忽視了實數(shù)根的存在與“△”之間的關(guān)系。
1、運用根的判別式時,若二次項系數(shù)為字母,要注意字母不為零的條件。
2、運用根與系數(shù)關(guān)系時,△≥0是前提條件。
3、條件多面時(如例5、例6)考慮要周全。
【布置作業(yè)?】??
1、當(dāng)m為何值時,關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個正根?
2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實數(shù)根。求證:關(guān)于x的方程
(m-5)x2-2(m+2)x + m=0一定有一個或兩個實數(shù)根。
考題匯編
1、(2000年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。
2、(2001年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0
(1)若方程的一個根為1,求m的值。
(2)m=5時,原方程是否有實數(shù)根,如果有,求出它的實數(shù)根;如果沒有,請說明理由。
3、(2002年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個實數(shù)根,且兩根的平方和比兩根的積大33,求m的值。
4、(2003年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個根,且x1+x2=6,x12+x22=20,求p和q的值。
一元 二次方程 一元二次方程精講篇九
12.6 一元二次方程的應(yīng)用(三)
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點:使學(xué)生會用列一元二次方程的方法解決有關(guān)增長率問題.
(二)能力訓(xùn)練點:進一步培養(yǎng)學(xué)生化實際問題為數(shù)學(xué)問題的能力和分析問題解決問題的能力,培養(yǎng)學(xué)生用數(shù)學(xué)的意識.
二、教學(xué)重點、難點
1.教學(xué)重點:學(xué)會用列方程的方法解決有關(guān)增長率問題.
2.教學(xué)難點?:有關(guān)增長率之間的數(shù)量關(guān)系.下列詞語的異同;增長,增長了,增長到;擴大,擴大到,擴大了.
三、教學(xué)步驟?
(一)明確目標(biāo).
(二)整體感知
(三)重點、難點的學(xué)習(xí)和目標(biāo)完成過程
1.復(fù)習(xí)提問
(1)原產(chǎn)量+增產(chǎn)量=實際產(chǎn)量.
(2)單位時間增產(chǎn)量=原產(chǎn)量×增長率.
(3)實際產(chǎn)量=原產(chǎn)量×(1+增長率).
2.例1? 某鋼鐵廠去年一月份某種鋼的產(chǎn)量為5000噸,三月份上升到7200噸,這兩個月平均每月增長的百分率是多少?
分析:設(shè)平均每月的增長率為x.
則2月份的產(chǎn)量是5000+5000x=5000(1+x)(噸).
3月份的產(chǎn)量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(噸).
解:設(shè)平均每月的增長率為x,據(jù)題意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合題意,舍去).
取x=0.2=20%.
教師引導(dǎo),點撥、板書,學(xué)生回答.
注意以下幾個問題:
(1)為計算簡便、直接求得,可以直接設(shè)增長的百分率為x.
(2)認真審題,弄清基數(shù),增長了,增長到等詞語的關(guān)系.
(3)用直接開平方法做簡單,不要將括號打開.
練習(xí)1.教材p.42中5.
學(xué)生分析題意,板書,筆答,評價.
練習(xí)2.若設(shè)每年平均增長的百分?jǐn)?shù)為x,分別列出下面幾個問題的方程.
(1)某工廠用二年時間把總產(chǎn)值增加到原來的b倍,求每年平均增長的百分率.
(1+x)2=b(把原來的總產(chǎn)值看作是1.)
(2)某工廠用兩年時間把總產(chǎn)值由a萬元增加到b萬元,求每年平均增長的百分?jǐn)?shù).
(a(1+x)2=b)
(3)某工廠用兩年時間把總產(chǎn)值增加了原來的b倍,求每年增長的百分?jǐn)?shù).
((1+x)2=b+1把原來的總產(chǎn)值看作是1.)
以上學(xué)生回答,教師點撥.引導(dǎo)學(xué)生總結(jié)下面的規(guī)律:
設(shè)某產(chǎn)量原來的產(chǎn)值是a,平均每次增長的百分率為x,則增長一次后的產(chǎn)值為a(1+x),增長兩次后的產(chǎn)值為a(1+x)2 ,…………增長n次后的產(chǎn)值為s=a(1+x)n.
規(guī)律的得出,使學(xué)生對此類問題能居高臨下,同時培養(yǎng)學(xué)生的探索精神和創(chuàng)造能力.
例2? 某產(chǎn)品原來每件600元,由于連續(xù)兩次降價,現(xiàn)價為384元,如果兩個降價的百分?jǐn)?shù)相同,求每次降價百分之幾?
分析:設(shè)每次降價為x.
第一次降價后,每件為600-600x=600(1-x)(元).
第二次降價后,每件為600(1-x)-600(1-x)?x
=600(1-x)2(元).
解:設(shè)每次降價為x,據(jù)題意得
600(1-x)2=384.
答:平均每次降價為20%.
教師引導(dǎo)學(xué)生分析完畢,學(xué)生板書,筆答,評價,對比,總結(jié).
引導(dǎo)學(xué)生對比“增長”、“下降”的區(qū)別.如果設(shè)平均每次增長或下降為x,則產(chǎn)值a經(jīng)過兩次增長或下降到b,可列式為a(1+x)2=b(或a(1-x)2=b).
(四)總結(jié)、擴展
1.善于將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,嚴(yán)格審題,弄清各數(shù)據(jù)相互關(guān)系,正確布列方程.培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.
2.在解方程時,注意巧算;注意方程兩根的取舍問題.
3.我們只學(xué)習(xí)一元一次方程,一元二次方程的解法,所以只求到兩年的增長率.3年、4年……,n年,應(yīng)該說按照規(guī)律我們可以列出方程,隨著知識的增加,我們也將會解這些方程.
四、布置作業(yè)?
教材p.42中a8
五、板書設(shè)計?
12.6? 一元二次方程應(yīng)用(三)
1.數(shù)量關(guān)系:?例1……?例2……
(1)原產(chǎn)量+增產(chǎn)量=實際產(chǎn)量?分析:……?分析……
(2)單位時間增產(chǎn)量=原產(chǎn)量×增長率?解……?解……
(3)實際產(chǎn)量=原產(chǎn)量(1+增長率)? ?
2.最后產(chǎn)值、基數(shù)、平均增長率、時間? ?
的基本關(guān)系:? ?
m=m(1+x)n? n為時間? ?
m為最后產(chǎn)量,m為基數(shù),x為平均增長率???
一元 二次方程 一元二次方程精講篇十
12.1? 用公式解一元二次方程(一)
1.使學(xué)生了解一元二次方程及整式方程的意義;2.掌握一元二次方程的一般形式,正確識別二次項系數(shù)、一次項系數(shù)及常數(shù)項.
1.通過一元二次方程的引入,培養(yǎng)學(xué)生分析問題和解決問題的能力;2.通過一元二次方程概念的學(xué)習(xí),培養(yǎng)學(xué)生對概念理解的完整性和深刻性.
由知識來源于實際,樹立轉(zhuǎn)化的思想,由設(shè)未知數(shù)列方程向?qū)W生滲透方程的思想方法,由此培養(yǎng)學(xué)生用數(shù)學(xué)的意識.。
一元二次方程的意義及一般形式.
正確識別一般式中的“項”及“系數(shù)”。
1.用電腦演示下面的操作:一塊長方形的薄鋼片,在薄鋼片的四個角上截去四個相同的小正方形,然后把四邊折起來,就成為一個無蓋的長方體盒子,演示完畢,讓學(xué)生拿出事先準(zhǔn)備好的長方形紙片和剪刀,實際操作一下剛才演示的過程.學(xué)生的實際操作,為解決下面的問題奠定基礎(chǔ),同時培養(yǎng)學(xué)生手、腦、眼并用的能力.
2.現(xiàn)有一塊長80cm,寬60cm的薄鋼片,在每個角上截去四個相同的小正方形,然后做成底面積為1500cm2的無蓋的長方體盒子,那么應(yīng)該怎樣求出截去的小正方形的邊長?
教師啟發(fā)學(xué)生設(shè)未知數(shù)、列方程,經(jīng)整理得到方程x2-70x+825=0,此方程不會解,說明所學(xué)知識不夠用,需要學(xué)習(xí)新的知識,學(xué)了本章的知識,就可以解這個方程,從而解決上述問題.
板書:“第十二章一元二次方程”.教師恰當(dāng)?shù)恼Z言,激發(fā)學(xué)生的求知欲和學(xué)習(xí)興趣.
學(xué)生看投影并思考問題
通過章前引例和節(jié)前引例,使學(xué)生真正認識到知識來源于實際,并且又為實際服務(wù),學(xué)習(xí)了一元二次方程的知識,可以解決許多實際問題,真正體會學(xué)習(xí)數(shù)學(xué)的意義;產(chǎn)生用數(shù)學(xué)的意識,調(diào)動學(xué)生積極主動參與數(shù)學(xué)活動中.同時讓學(xué)生感到一元二次方程的解法在本章中處于非常重要的地位.
1.復(fù)習(xí)提問
(1)什么叫做方程?曾學(xué)過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
2.引例:剪一塊面積為150cm2的長方形鐵片使它的長比寬多5cm,這塊鐵片應(yīng)怎樣剪?
引導(dǎo),啟發(fā)學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,得到整式方程和一元二次方程的概念.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
一元二次方程:只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是2,這樣的整式方程叫做一元二次方程.
3.練習(xí):指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x2;
(2)7x2+6=2x(3x+1);
(3)
(4)6x2=x;
(5)2x2=5y;
(6)-x2=0
4.任何一個一元二次方程都可以化為一個固定的形式,這個形式就是一元二次方程的一般形式.
一元二次方程的一般形式:ax2+bx+c=0(a≠0).ax2稱二次項,bx稱一次項,c稱常數(shù)項,a稱二次項系數(shù),b稱一次項系數(shù).
一般式中的“a≠0”為什么?如果a=0,則ax2+bx+c=0就不是一元二次方程,由此加深對一元二次方程的概念的理解.
5.例1? 把方程3x(x-1)=2(x+1)+8化成一般形式,并寫出二次項系數(shù),一次項系數(shù)及常數(shù)項?
教師邊提問邊引導(dǎo),板書并規(guī)范步驟,深刻理解一元二次方程及一元二次方程的一般形式.
討論后回答
學(xué)生設(shè)未知數(shù)列方程,并整理得方程x2+5x-150=0,此方程和章前引例所得到的方程x2+70x+825=0加以觀察、比較,
獨立完成
加深理解
學(xué)生試解
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊
練習(xí)1:教材p.5中1,2.
練習(xí)2:下列關(guān)于x的方程是否是一元二次方程?為什么?若是一元二次方程,請分別指出其二次項系數(shù)、一次項系數(shù)、常數(shù)項:.
(4)(b2+1)x2-bx+b=2;(5)2tx(x-5)=7-4tx.
教師提問及恰當(dāng)?shù)囊龑?dǎo),對學(xué)生回答給出評價,通過此組練習(xí),加強對概念的理解和深化
要求多數(shù)學(xué)生在練習(xí)本上筆答,部分學(xué)生板書,師生評價.題目答案不唯一,最好二次項系數(shù)化為正數(shù).
(四)總結(jié)、擴展
引導(dǎo)學(xué)生從下面三方面進行小結(jié).從方法上學(xué)到了什么方法?從知識內(nèi)容上學(xué)到了什么內(nèi)容?分清楚概念的區(qū)別和聯(lián)系?
1.將實際問題用設(shè)未知數(shù)列方程轉(zhuǎn)化為數(shù)學(xué)問題,體會知識來源于實際以及轉(zhuǎn)化為方程的思想方法.
2.整式方程概念、一元二次方程的概念以及它的一般形式,二次項系數(shù)、一次項系數(shù)及常數(shù)項.歸納所學(xué)過的整式方程.
3.一元二次方程的意義與一般形式ax2+bx+c=0(a≠0)的區(qū)別和聯(lián)系.強調(diào)“a≠0”這個條件有長遠的重要意義.
學(xué)生討論回答
1.教材p.6 練習(xí)2.
2.思考題:
1)能不能說“關(guān)于x的整式方程中,含有x2項的方程叫做一元二次方程?”
2)試說出一元三次方程,一元四次方程的定義及一般形式(學(xué)有余力的學(xué)生思考).
一元 二次方程 一元二次方程精講篇十一
1.了解整式方程和一元二次方程的概念;
2.知道一元二次方程的一般形式,會把一元二次方程化成一般形式。
3.通過本節(jié)課引入的教學(xué),初步培養(yǎng)學(xué)生的數(shù)學(xué)來源于實踐又反過來作用于實踐的辨證唯物主義觀點,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
重點:
1.一元二次方程的有關(guān)概念
2.會把一元二次方程化成一般形式
難點: 一元二次方程的含義.
引入新課
引例:剪一塊面積是150cm2的長方形鐵片,使它的長比寬多5cm、這塊鐵片應(yīng)該怎樣剪?
分析:1.要解決這個問題,就要求出鐵片的長和寬。
2.這個問題用什么數(shù)學(xué)方法解決?(間接計算即列方程解應(yīng)用題。
3.讓學(xué)生自己列出方程?? (???? x(x十5)=150??? )
深入引導(dǎo):方程x(x十5)=150有人會解嗎?你能叫出這個方程的名字嗎?
二、新課
1.從上面的引例我們有這樣一個感覺:在解決日常生活的計算問題中確需列方程解應(yīng)用題,但有些方程我們解不了,但必須想辦法解出來。事實上初中代數(shù)研究的主要對象是方程。這部分內(nèi)容從初一一直貫穿到初三。到目前為止我們對方程研究的還很不夠,從今天起我們就開始研究這樣一類方程--------一元一二次方程(板書課題)
2.什么是—元二次方程呢?現(xiàn)在我們來觀察上面這個方程:它的左右兩邊都是關(guān)于未知數(shù)的整式,這樣的方程叫做整式方程,就這一點來說它與一元一次方程沒有什么區(qū)別、也就是說一元二次方程首先必須是一個整式方程,但是一個整式方程未必就是一個一元二次方程、這還取決于未知數(shù)的最高次數(shù)是幾。如果方程未知數(shù)的最高次數(shù)是2、這樣的整式方程叫做一元二次方程.(板書一元二次方程的定義)
3.強化一元二次方程的概念
下列方程都是整式方程嗎?其中哪些是一元一次方程?哪些是一元二次方程?
(1)3x十2=5x—3:? (2)x2=4
(2)(x十3)(3x·4)=(x十2)2;? (4)(x—1)(x—2)=x2十8
從以上4例讓學(xué)生明白判斷一個方程是否是一元二次方程不能只看表面、而是能化簡必須先化簡、然后再查看這個方程未知數(shù)的最高次數(shù)是否是2。
4. 一元二次方程概念的延伸
提問:一元二次方程很多嗎?你有辦法一下寫出所有的一元二次方程嗎?
引導(dǎo)學(xué)生回顧一元二次方程的定義,分析一元二次方程項的情況,啟發(fā)學(xué)生運用字母,找到一元二次方程的一般形式
ax2+bx+c=0?? (a≠0)
1).提問a=0時方程還是一無二次方程嗎?為什么?(如果a=0、b≠就成了一元一次方程了)。
2).講解方程中ax2、bx、c各項的名稱及a、b的系數(shù)名稱.
3).強調(diào):一元二次方程的一般形式中“=”的左邊最多三項、其中一次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在、而且左邊通常按x的降冪排列:特別注意的是“=”的右邊必須整理成0。
強化概念(課本p6)
1.說出下列一元二次方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)x2十3x十2=o? (2)x2—3x十4=0;? (3)3x2-5=0
(4)4x2十3x—2=0;? (5)3x2—5=0;?????? (6)6x2—x=0。
2.把下列方程先化成二元二次方程的一般形式,再寫出它的二次項系數(shù)、一次項系數(shù)、常數(shù)項:
(1)6x2=3-7x;? (3)3x(x-1)=2(x十2)—4;(5)(3x十2)2=4(x-3)2
課堂小節(jié)
(1)本節(jié)課主要介紹了一類很重要的方程—一一元二次方程(如果方程未知數(shù)的最高次數(shù)為2,這樣的整式方程叫做一元一二次方程);
(2)要知道一元二次方程的一般形式ax2十bx十c=0(a≠0)并且注意一元二次方程的一般形式中“=”的左邊最多三項、其中二次項、常數(shù)項可以不出現(xiàn)、但二次項必須存在。特別注意的是“=”的右邊必須整理成0;
(3)要很熟練地說出隨便一個一元二次方程中一二次項、一次項、常數(shù)項:二次項系數(shù)、一次項系數(shù).
課外作業(yè):略