作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。怎樣寫教案才更能起到其作用呢?教案應該怎么制定呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的教案范文,我們一起來了解一下吧。
滬科版七年級下冊數(shù)學教案篇一
1.經(jīng)歷探索平方差公式的過程。
2.會推導平方差公式,并能運用公式進行簡單的運算。
重點:平方差公式的推導和應用;
難點:理解平方差公式的結(jié)構特征,靈活應用平方差公式。
你能用簡便方法計算下列各題嗎?
(1)2001×1999(2)998×1002
導入新課:計算下列多項式的積.
(1)(x+1)(x—1);
(2)(m+2)(m—2)
(3)(2x+1)(2x—1);
(4)(x+5y)(x—5y)。
結(jié)論:兩個數(shù)的和與這兩個數(shù)的差的積,等于這兩個數(shù)的平方差。
即:(a+b)(a—b)=a2—b2
例1:運用平方差公式計算:
(1)(3x+2)(3x—2);
(2)(b+2a)(2a—b);
(3)(—x+2y)(—x—2y)。
例2:計算:
(1)102×98;
(2)(y+2)(y—2)—(y—1)(y+5)。
隨堂練習
計算:
(1)(a+b)(—b+a);
(2)(—a—b)(a—b);
(3)(3a+2b)(3a—2b);
(4)(a5—b2)(a5+b2);
(5)(a+2b+2c)(a+2b—2c);
(6)(a—b)(a+b)(a2+b2)。
(a+b)(a—b)=a2—b2
滬科版七年級下冊數(shù)學教案篇二
1、 理解有序數(shù)對的應用意義,了解平面上確定點的常用方法
2、 培養(yǎng)用數(shù)學的意識,激發(fā)學習興趣。
理解有序數(shù)對的意義和作用
用有序數(shù)對表示點的位置
1.一位居民打電話給供電部門:"衛(wèi)星路第8根電線桿的路燈壞了,"維修人員很快修好了路燈同學們欣賞下面圖案。
2.地質(zhì)部門在某地埋下一個標志樁,上面寫著"北緯44.2°,東經(jīng)125.7°"。
3.某人買了一張8排6號的電影票,很快找到了自己的座位。
分析以上情景,他們分別利用那些數(shù)據(jù)找到位置的。。
你能舉出生活中利用數(shù)據(jù)表示位置的例子嗎?
有序數(shù)對:用含有兩個數(shù)的詞表示一個確定的位置,其中各個數(shù)表示不同的含義,我們把這種有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b)
利用有序數(shù)對,可以很準確地表示出一個位置。
1.在教室里,根據(jù)座位圖,確定數(shù)學課代表的位置
2.教材40頁練習
常見的確定平面上的點位置常用的方法
(1)以某一點為原點(0,0)將平面分成若干個小正方形的方格,利用點所在的行和列的位置來確定點的位置。
(2)以某一點為觀察點,用方位角、目標到這個點的距離這兩個數(shù)來確定目標所在的位置。
1.如圖,a點為原點(0,0),則b點記為(3,1)
2.如圖,以燈塔a為觀測點,小島b在燈塔a北偏東45,距燈塔3km 處。
例2 如圖是某次海戰(zhàn)中敵我雙方艦艇對峙示意圖,對我方艦艇來說:
(1)北偏東方向上有哪些目標?要想確定敵艦b的位置,還需要什么數(shù)據(jù)?
(2)距我方潛艇圖上距離為1cm處的敵艦有哪幾艘?
(3)要確定每艘敵艦的位置,各需要幾個數(shù)據(jù)?
1. 如圖是某城市市區(qū)的一部分示意圖,對市政府來說:
北偏東60的方向有哪些單位?要想確定單位的位置。還需要哪些數(shù)據(jù)?火車站與學校分別位于市政府的什么方向,怎樣確定他們的位置?
結(jié)合實際問題歸納方法
學生嘗試描述位置
2. 如圖,馬所處的位置為(2,3)。
(1) 你能表示出象的位置嗎?
(2) 寫出馬的下一步可以到達的位置。
1、 為什么要用有序數(shù)對表示點的位置,沒有順序可以嗎?
2、 幾種常用的表示點位置的方法。
[作業(yè)]
必做題:教科書44頁:1題
滬科版七年級下冊數(shù)學教案篇三
1、特點與地位:重點中的重點。
本課是教材求兩結(jié)點之間的最短路徑問題是圖最常見的應用的之一,在交通運輸、通訊網(wǎng)絡等方面具有一定的實用意義。
2、重點與難點:結(jié)合學生現(xiàn)有抽象思維能力水平,已掌握基本概念等學情,以及求解最短路徑問題的自身特點,確立本課的重點和難點如下:
(1)重點:如何將現(xiàn)實問題抽象成求解最短路徑問題,以及該問題的解決方案。
(2)難點:求解最短路徑算法的程序?qū)崿F(xiàn)。
3、教學安排:最短路徑問題包含兩種情況:一種是求從某個源點到其他各結(jié)點的最短路徑,另一種是求每一對結(jié)點之間的最短路徑。根據(jù)教學大綱安排,重點講解第一種情況問題的解決。安排一個課時講授。教材直接分析算法,考慮實際應用需要,補充旅游景點線路選擇的實例,實例中問題解決與算法分析相結(jié)合,逐步推動教學過程。
1、知識目標:掌握最短路徑概念、能夠求解最短路徑。
2、能力目標:
(1)通過將旅游景點線路選擇問題抽象成求最短路徑問題,培養(yǎng)學生的數(shù)據(jù)抽象能力。
(2)通過旅游景點線路選擇問題的解決,培養(yǎng)學生的獨立思考、分析問題、解決問題的能力。
3、素質(zhì)目標:培養(yǎng)學生講究工作方法、與他人合作,提高效率。
課前充分準備,研讀教材,查閱相關資料,制作多媒體課件。教學過程中除了使用傳統(tǒng)的“講授法”以外,主要采用“案例教學法”,同時輔以多媒體課件,以啟發(fā)的方式展開教學。由于本節(jié)課的內(nèi)容屬于圖這一章的難點,考慮學生的接受能力,注意與學生溝通,根據(jù)學生的反應控制好教學進度是本節(jié)課成功的關鍵。
1、課前上次課結(jié)課時給學生布置任務,使其有針對性的預習。
2、課中指導學生討論任務解決方法,引導學生分析本節(jié)課知識點。
3、課后給學生布置同類型任務,加強練習。
(一)課前復習(3~5分鐘)回顧“路徑”的概念,為引出“最短路徑”做鋪墊。
教學方法及注意事項:
(1)采用提問方式,注意及時小結(jié),提問的目的是幫助學生回憶概念。
(2)提示學生“溫故而知新”,養(yǎng)成良好的學習習慣。
(二)導入新課(3~5分鐘)以城市公路網(wǎng)為例,基于求兩個點間最短距離的實際需要,引出本課教學內(nèi)容“求最短路徑問題”。教學方法及注意事項:
(1)先講實例,再指出概念,既可以吸引學生注意力,激發(fā)學習興趣,又可以實現(xiàn)教學內(nèi)容的自然過渡。
(2)此處使用案例教學法,不在于問題的求解過程,只是為了說明問題的存在,所以這里的例子只需要概述,能夠說明問題即可。
(三)講授新課(25~30分鐘)
1、求某一結(jié)點到其他各結(jié)點的最短路徑(重點)主要采用案例教學法,提出旅游景點選擇的例子,解決如何選擇代價小、景點多的路線。
(1)將實際問題抽象成圖中求任一結(jié)點到其他結(jié)點最短路徑問題。(3~5分鐘)教學方法及注意事項:
①主要采用講授法,將實際問題用圖形表示出來。語言描述轉(zhuǎn)換的方法(用圓圈加標號表示某一景點,用箭頭表示從某景點到其他景點是否存在旅游線路,并且將旅途費用寫在箭頭的旁邊。)一邊用語言描述,一邊在黑上畫圖。
②注意示范畫圖只進行一部分,讓學生獨立思考、自主完成余下部分的轉(zhuǎn)化。
③及時總結(jié),原型抽象(景點作為圖的結(jié)點,景點間的線路作為圖的邊,旅途費用作為邊的權值),將案例求解問題抽象成求圖中某一結(jié)點到其他各結(jié)點的最短路徑問題。
④利用多媒體課件,向?qū)W生展示一張帶權有向圖,并略作解釋,為后續(xù)教學做準備。
教學方法及注意事項:
①啟發(fā)式教學,如何實現(xiàn)按路徑長度遞增產(chǎn)生最短路徑?
②結(jié)合案例分析求解最短路徑過程中(重點)注意此處借助黑板,按照算法思想的步驟。同樣,也是只示范一部分,余下部分由學生獨立思考完成。
(四)課堂小結(jié)(3~5分鐘)
1、明確本節(jié)課重點
2、提示學生,這種方式形成的圖又可以解決哪類實際問題呢?
(五)布置作業(yè)
1、書面作業(yè):復習本次課內(nèi)容,準備一道備用習題,靈活把握時間安排。
以旅游路線選擇為主線,靈活采用案例教學、示范教學、多媒體課件等多種手段輔助教學,使枯燥的理論講解生動起來。在順利開展教學的同時,體現(xiàn)所講內(nèi)容的實用性,提高學生的學習興趣。
滬科版七年級下冊數(shù)學教案篇四
一、本講主要學習內(nèi)容
1、代數(shù)式的意義
2、列代數(shù)式的注意點
3、代數(shù)式值的意義
其中列代數(shù)式是重點,也是難點。
下面講述一下這三點知識的主要內(nèi)容。
1、代數(shù)式的意義
用基本的運算符號(包括加、減、乘、除以及后面所要學的乘方、開方)將數(shù)及 表示數(shù)的字母連接而成的式子叫代數(shù)式。單個的數(shù)字或字母也叫代數(shù)式。如:5,a, 4x, ab, x+2y, , a2等
2、列代數(shù)式的注意點
⑴在代數(shù)式中出現(xiàn)的乘號“×”,通常寫作“· ”或者省略不寫。如3×a可寫作3· a或3a, 2×(x+y)可以寫作2·(x+y)或2(x+y)。
⑵數(shù)字與數(shù)字相乘時乘號,仍然用“×”,不宜用“· ”,更不能省略不寫。
⑶數(shù)字寫在字母的前面。
⑷在代數(shù)式中出現(xiàn)除法運算時,一般按照分數(shù)的寫法來寫, 如s÷t寫作 。
⑸代數(shù)式中帶分數(shù)與字母相乘時,應寫成假分數(shù)與字母相乘的形式,如 應寫作 。
(6)兩個代數(shù)式相乘,應該用分數(shù)形式表示。
3、代數(shù)式值的意義
用數(shù)值代替代數(shù)式里的字母,按照代數(shù)式指明的運算,計算出的結(jié)果,就叫做代數(shù)式的值。
二、典型例題
例1 填空
①棱長是acm 的正方體的體積是___cm3。
②溫度由t°c下降2°c后是___°c。
③產(chǎn)量由m千克增長10%,就達到___千克。
④a和b 的倒數(shù)和是___。
⑤a和b的和的倒數(shù)是___。
解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤
說明: ⑴列代數(shù)式的關鍵在于仔細審題,弄清題意,正確找出題中的數(shù)量關系和運算順序,對一些容易混淆的說法,要仔細進行對比,對一些比較復雜的數(shù)量關系,可先分段考慮,要正確地使用括號。
⑵像a3 ,(1+10%)m 這樣的式子后在可直接寫單位,像t-2這樣的式子,需寫單位時,要將整個式子用括號括起來。
例2、用代數(shù)式表示
⑴被4整除得 m的數(shù)
⑵被2除商為 a余1的數(shù)
⑶兩數(shù)的平均數(shù)
⑷a和b兩數(shù)的平方差與這兩數(shù)平方和的商
⑸一項工程,甲獨做需x天,乙獨做需y天完成,甲乙兩人合做完成的天數(shù)。 ⑹某人先用v1千米/時速度行完全路程的一半,又用v2千米/時的速度行完另一半, 若全路程長為a千米,用代數(shù)式表示此人行完全路程的平均速度。
⑺個位數(shù)字是8,十位數(shù)字是 b 的兩位數(shù)。
解: ⑴4m ⑵2a+1 ⑶設這兩個數(shù)分別為a、b、則平均數(shù)為 。
⑷ ⑸ ⑹ ⑺10b+8
分析說明:
⑴數(shù)a除以數(shù)b,除得的商正好是整數(shù),而沒有余數(shù),我們稱a能被b整除。
⑵能被2整除的數(shù)叫偶數(shù),不能被2整除的數(shù)叫奇數(shù)。兩個連續(xù)奇數(shù),若較小的是n,則較大的是n +2 。
⑶對于題⑶中兩數(shù)沒有給出,為說明其一般性??上仍O這兩個數(shù)為a, b;用字母表示數(shù)時,在同一個問題中,不同的數(shù)要用不同的字母表示。
⑷題⑷中的a,b兩數(shù)的平方是a2-b2,不能顛倒,也不能寫成(a-b)2。
⑸題⑸中甲乙兩人的工作效率分別是 和 ,所以甲乙兩人合作完成的時間是 即 。
⑹平均速度=
所以平均速度為 解答本題容易錯寫成 ,這主要是概念不清造成的。
題⑺中主要應清楚自然數(shù)的十進制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一個自然數(shù)總可以用它各個數(shù)位上的數(shù)字來表示。
例3說出下列代數(shù)式的意義。
⑴ 3a+2 ⑵ 3(a+2) (3)
(4) a- (5)(a-b)2 (6)a2-b2
分析:說出代數(shù)式的意義,具體說法沒有統(tǒng)一規(guī)定,以簡明而不致引起誤會為出發(fā)點。
①不含括號的代數(shù)式習慣從左到右按運算順序讀,如(1)小題3a+2讀作“a的3倍與2的和”;
②含括號的代數(shù)應該把括號里的代數(shù)式看作一個整體,按運算結(jié)果來讀,如(2)小題3(a+2)讀作“a與2的和的3倍”;
③由于分數(shù)線具有除法和括號的雙重作用,應該把分子與分母看成一個整體來讀。
解:(1)a的3倍與2的和;
(2)a與2的和的3倍;
(3)a與b的差除以c的商;
(4)a與b除以c的差;
(5)a與b的差的平方;
(6)a、b的平方差。
例4、當x=7,y=4, z=0時,求代數(shù)式x ( 2x-y+3z)的值。
解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70
說明:⑴由比例題可以看出,求代數(shù)式值的一般步驟是:①代入 ②計算⑵在代數(shù)式中,數(shù)字與字母之間,字母與字母之間的乘號是省略不寫的。而當代入數(shù)據(jù)求值時,都變成了數(shù)字相乘,原來省略的乘號“×”應補上。
1、選擇題
(1)下列各式中,屬于代數(shù)式的有( )個。
, s= ah, 5× , -y, x-2=y, a-b, 3x>y
a、2 b、3 c、4 d、5
(2)下列代數(shù)式,書寫正確的是( )
a、2 b、m· n c、 mn d、(m+n)÷2
(3)用代數(shù)式表示“a的 乘以b減去c的積”是( )
a、 ab-c b、 a(b-c) c、 a( b-c) d、
(4)用語言敘述代數(shù)式 ,表述不正確的是( )
a、比a的倒數(shù)小2的數(shù); b、a與2的差的倒數(shù)
c、1除以a減去2的商 d、比a小2的數(shù)的倒數(shù)
2、判斷題
⑴n除m用代數(shù)式可表示成 ( )
⑵三個連續(xù)的奇數(shù),中間一個是n,其余兩個分別是n-2和n+2( )
⑶如果n是偶數(shù),則緊跟在n后面的兩個連續(xù)奇數(shù)分別是n+1,n+3( )
3、填空題
⑴每本練習本是0.3元,買a本練習本需__元。
⑵小明有5元錢,買了a支鉛筆,每支鉛筆是0.2元,則小明還剩__元。
⑶被3整除得n 的數(shù)是__。
⑷個位上的數(shù)是a,十位上的數(shù)是個位上的數(shù)的2倍少3的兩位數(shù)是_。
⑸加工一批零件共m個,乙先加工n個零件后,甲單獨再做3天才完成任務,則甲平均每天加工零件__個。
⑹一種小麥磨成面粉后,重量減少數(shù)15%, b千克小麥磨成面粉后,面粉的重量是__千克。
⑺一個長方形的長是a,寬是長的 還多1,這個長方形的周長是__
⑻a、b兩個碼頭相距s千米,一輪船從a碼頭到b碼頭的速度是a千米/時,返回的速度比從a碼頭到b碼頭快2千米/時,這艘船在a,b兩碼頭間往返一次,共需__小時。
4、求下列代數(shù)式的值。
⑴ 其中a=2
⑵當 時,求代數(shù)式 的值。
5、填表
x
y
x+y
x-y
xy
5
15
6、某班級里男生人數(shù)比女生人數(shù)的 多16人,男生人數(shù)是a,問a的代數(shù)式表示:⑴女生人數(shù)。 ⑵該班學生總數(shù);當a=25時,求該班學生總數(shù)。
滬科版七年級下冊數(shù)學教案篇五
1.1 一元一次不等式組
第1教案
1. 能結(jié)合實例,了解一元一次不等式組的相關概念。
2. 讓學生在探索活動中體會化陌生為熟悉,化復雜為簡單的“轉(zhuǎn)化”思想方法。
3. 提高分析問題的能力,增強數(shù)學應用意識,體會數(shù)學應用價值。
1、。不等式組的解集的概念。
2、根據(jù)實際問題列不等式組。
探索方法,合作交流。
1. 估計自己的體重不低于多少千克?不超過多少千克?若沒體重為x千克,列出兩個不等式。
2. 由許多問題受到多種條件的限制引入本章。
自主探索、解決第2頁“動腦筋”中的問題,完成書中填空。
分別解出兩個不等式。
把兩個不等式解集在同一數(shù)軸上表示出來。
找出本題的答案。
教師舉例說出什么是一元一次不等式組。什么是一元一次不等式組的解集。(滲透交集思想)
滬科版七年級下冊數(shù)學教案篇六
1.使學生了解運用公式法分解因式的意義;
2.使學生掌握用平方差公式分解因式
重點:掌握運用平方差公式分解因式。
難點:將單項式化為平方形式,再用平方差公式分解因式。
學習方法:歸納、概括、總結(jié)。
創(chuàng)設問題情境,引入新課
在前兩學時中我們學習了因式分解的定義,即把一個多項式分解成幾個整式的積的形式,還學習了提公因式法分解因式,即在一個多項式中,若各項都含有相同的因式,即公因式,就可以把這個公因式提出來,從而將多項式化成幾個因式乘積的形式。
如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,只要我們記住因式分解是多項式乘法的相反過程,就能利用這種關系找到新的因式分解的方法,本學時我們就來學習另外的一種因式分解的方法——公式法。
1.請看乘法公式
左邊是整式乘法,右邊是一個多項式,把這個等式反過來就是左邊是一個多項式,右邊是整式的乘積。大家判斷一下,第二個式子從左邊到右邊是否是因式分解?
利用平方差公式進行的因式分解,第(2)個等式可以看作是因式分解中的平方差公式。
a2—b2=(a+b)(a—b)
2.公式講解
如x2—16
=(x)2—42
=(x+4)(x—4)。
9m2—4n2
=(3m)2—(2n)2
=(3m+2n)(3m—2n)。
例1、把下列各式分解因式:
(1)25—16x2;(2)9a2—b2。
例2、把下列各式分解因式:
(1)9(m+n)2—(m—n)2;(2)2x3—8x。
補充例題:判斷下列分解因式是否正確。
(1)(a+b)2—c2=a2+2ab+b2—c2。
(2)a4—1=(a2)2—1=(a2+1)?(a2—1)。
教科書練習。
1、教科書習題。
2、分解因式:x4—16x3—4x4x2—(y—z)2。
3、若x2—y2=30,x—y=—5求x+y。
滬科版七年級下冊數(shù)學教案篇七
1、經(jīng)歷探索菱形的識別方法的過程,在活動中培養(yǎng)探究意識與合作交流的習慣;
2、運用菱形的識別方法進行有關推理。
例1. 如圖,在△abc中,ad是△abc的角平分線。de∥ac交ab于e,df∥ab交ac于f.四邊形aedf是菱形嗎?說明你的理由。
例2.如圖,平行四邊形abcd的對 角線ac的垂直平分線與邊ad、bc分別交于e、f.
四邊形afce是菱形嗎?說明理由。
例3.如圖 , abcd是矩形紙片,翻折b、d,使bc、ad恰好落在ac上,設f、h分別是b、d落在ac上的兩點,e、g分別是折痕ce、ag與ab、cd的交點
(1)試說明四邊形aecg是平行四邊形;
(2)若ab=4cm,bc=3cm,求線段ef的長;
(3)當矩形兩邊ab、bc具備怎樣的關系時,四邊形aecg是菱形。
一、填空題
1、如果四邊形abcd是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形
2、如圖,d、e、f分別是△abc的邊bc、ca、ab上的點,
且de∥ba,df∥ ca
(1)要使四邊形afde是菱形,則要增加條件______________________
(2)要使四邊形afde是矩形,則要增加條件______________________
二、解答題
1、如圖,在□abcd中 ,若2,判斷□abcd是矩形還是菱形?并說明理由。
2、如圖 ,平行四邊形a bcd的兩條對角線ac,bd相交于點o,oa=4,ob=3,ab=5.
(1) ac,bd互相垂直嗎?為什么?
(2) 四邊形abcd是菱形 嗎?
3、如圖,在□abcd中,已知adab,abc的平分線交ad于e,ef∥ab交bc于f,試問: 四 邊形abfe是菱形嗎?請說明理由。
4、如圖,把一張矩形的紙abcd沿對角線bd折疊,使點c落在點e處,be與ad交于點f.
⑴求證:abf≌
⑵若將折疊的圖形恢復原狀,點f與bc邊上的點m正好重合,連接dm,試判斷四邊形bmdf的形狀,并說明理由。
滬科版七年級下冊數(shù)學教案篇八
:1.能夠在實際情境中,抽象概括出所要研究的數(shù)學問題,增強學生的數(shù)感符號感。
2.在已有的對冪的知識的了解基礎之上,通過與同伴合作,經(jīng)歷探索同底數(shù)冪乘法運算性質(zhì)
過程,進一步體會冪的意義,發(fā)展合作交流能力、推理能力和有條理的表達能力。
3.了解同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題,感受數(shù)學與現(xiàn)實生活的密切聯(lián)系,
增強學生的數(shù)學應用意識,訓練他們養(yǎng)成學會分析問題、解決問題的良好習慣。
:同底數(shù)冪乘法的運算性質(zhì),并能解決一些實際問題。
:
活動內(nèi)容:復習七年級上冊數(shù)學課本中介紹的有關乘方運算知識:
活動內(nèi)容:以課本上有趣的天文知識為引例,讓學生從中抽象出簡單的數(shù)學模型,實際在列式計算時遇到了同底數(shù)冪相乘的形式,給出問題,啟發(fā)學生進行獨立思考,也可采用小組合作交流的形式,結(jié)合學生現(xiàn)有的有關冪的意義的知識,進行推導嘗試,力爭獨立得出結(jié)論。
1.利用乘方的意義,提問學生,引出法則:計算103×102.
解:103×102=(10×10×10)×(10×10)(冪的意義)
=10×10×10×10×10(乘法的結(jié)合律)=105.
2.引導學生建立冪的運算法則:
將上題中的底數(shù)改為a,則有a3·a2=(aaa)·(aa)=aaaaa=a5,即a3·a2=a5=a3+2.
用字母m,n表示正整數(shù),則有即am·an=am+n.
3.引導學生剖析法則
(1)等號左邊是什么運算?(2)等號兩邊的底數(shù)有什么關系?
(3)等號兩邊的指數(shù)有什么關系?(4)公式中的底數(shù)a可以表示什么
(5)當三個以上同底數(shù)冪相乘時,上述法則是否成立?
要求學生敘述這個法則,并強調(diào)冪的底數(shù)必須相同,相乘時指數(shù)才能相加.
活動內(nèi)容:1.完成課本“想一想”:a?a?a等于什么?
2.通過一組判斷,區(qū)分“同底數(shù)冪的乘法”與“合并同類項”的不同之處。
3.獨立處理例2,從實際情境中學會處理問題的方法。
4.處理隨堂練習(可采用小組評分競爭的方式,如時間緊,放于課下完成)。mnp
活動內(nèi)容:計算:(1)-a2·a6(2)(-x)·(-x)3(3)ym·ym+1(4)??7?8?73
(5)??6??63(6)??5??53???5?。(7)?a?b???a?b?7542
2(8)?b?a???a?b?(9)x5·x6·x3(10)-b3·b3
(11)-a·(-a)3(12)(-a)2·(-a)3·(-a)
活動內(nèi)容:師生互相交流總結(jié)本節(jié)課上應該掌握的同底數(shù)冪的乘法的特征,教師對課堂上學生掌握不夠牢固的知識進行強調(diào)與補充,學生也可談一談個人的學習感受。
1.請你根據(jù)本節(jié)課學習,把感受最深、收獲最大的方面寫成體會,用于小組交流。
2.完成課本習題1.4中所有習題。
1.2冪的乘方與積的乘方(一)