總結是對某一特定時間段內(nèi)的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它能夠使頭腦更加清醒,目標更加明確,讓我們一起來學習寫總結吧。那么我們該如何寫一篇較為完美的總結呢?以下是小編精心整理的總結范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
高一函數(shù)概念知識點歸納總結 高一數(shù)學函數(shù)概念知識點篇一
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數(shù)。
特別地,當b=0時,y是x的正比例函數(shù)。
即:y=kx(k為常數(shù),k≠0)
1.y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))
2、當x=0時,b為函數(shù)在y軸上的截距。
1、作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)
2、性質(zhì):(1)在一次函數(shù)上的任意一點p(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。
3.k,b與函數(shù)圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=o時,直線通過原點o(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
已知點a(x1,y1);b(x2,y2),請確定過點a、b的一次函數(shù)的表達式。
(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數(shù)上的任意一點p(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達式。
高一函數(shù)概念知識點歸納總結 高一數(shù)學函數(shù)概念知識點篇二
1、定義法;
2、換元法;
3、待定系數(shù)法;
4、函數(shù)方程法;
5、參數(shù)法;
6、配方法
高一函數(shù)概念知識點歸納總結 高一數(shù)學函數(shù)概念知識點篇三
1、課前預習教材。高中生想要學好數(shù)學,可以養(yǎng)成課前預習的好習慣。就是提前把老師第二天要講的內(nèi)容預習一下,看看自己哪里能看懂,哪里不懂。這樣才能在老師講課的時候,帶著問題有針對性的去聽。
2、上課專心聽講。很多高中生數(shù)學不好的原因,往往是因為沒有認真聽課。很多同學都認為老師講的已經(jīng)懂了,就不認真聽了,但是在自己做題的時候,卻往往做不對題。上課專心聽講往往是比課下自己學習要效果更好。
3、準備筆記本。高中生要準備一個筆記本,筆記本并不是讓你記公式和概念的,這些的東西書上都是有的,筆記本主要是要記老師給的例題。畢竟老師是很有經(jīng)驗的,他們給的例題都是有一定的代表性的,把例題研究透對于數(shù)學成績的提高是有很大的助益的。
而對于學習函數(shù)知識也是差不多的:
首先,在學習高中函數(shù)的時候,學生要掌握好各個函數(shù)的性質(zhì)特點。函數(shù)的定義明確,還是比較容易理解的。學生們可以通過函數(shù)的性質(zhì)去了解并掌握函數(shù)。很多高一學生開始學習函數(shù)的時候,可能有很多內(nèi)容不懂,但是不要緊張,也不要自暴自棄。
要堅持聽好每一節(jié)課,知識總是聚少成多,無論什么知識都是見微知著的,需要不停積累才能看出事物的本質(zhì)。
其次,在學習函數(shù)的時候,不要死記硬背。函數(shù)的基礎題型比較多,老師上課的時候往往會重點講解。學生要掌握并理解好重點題型,如果只是熟悉題型,并不理解的話,很難將函數(shù)知識融會貫通。函數(shù)的學習重點不在記憶,而在于理解。
行百里者半九十,學習函數(shù)要有耐心,專心聽課,重視理解。只要持之以恒,就一定可以學好數(shù)學。
高一函數(shù)概念知識點歸納總結 高一數(shù)學函數(shù)概念知識點篇四
1、換元法;
2、配方法;
3、判別式法;
4、幾何法;
5、不等式法;
6、單調(diào)性法;
7、直接法