心得體會是指個人在經(jīng)歷某種事物、活動或事件后,通過思考、總結(jié)和反思,從中獲得的經(jīng)驗和感悟。優(yōu)質(zhì)的心得體會該怎么樣去寫呢?下面我?guī)痛蠹艺覍げ⒄砹艘恍﹥?yōu)秀的心得體會范文,我們一起來了解一下吧。
二次函數(shù)心得體會篇一
從課本的體系來看,這節(jié)課明顯是要讓學生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。
重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認識,一切變得簡單了!
對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學生興趣,也盡量減少學生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。
對于練習的設(shè)計,仍然采取了不重復的原則性,盡量做到每題針對一個問題,并進行及時的小結(jié),也遵循了從開放到封閉的原則,達到了良好的效果。
二次函數(shù)心得體會篇二
學習二次函數(shù)是高中數(shù)學中重要的一部分,在考試中也經(jīng)常會出現(xiàn)。備考二次函數(shù)時,除了掌握基本的概念、性質(zhì)和應(yīng)用外,還需要有科學的復習方法和策略。在備考的過程中,我總結(jié)了一些心得體會,現(xiàn)在和大家分享一下。
第二段:理清基本概念
學習任何一門學科,理清基本概念是很重要的。對于二次函數(shù)來說,必須掌握基本概念,如二次函數(shù)的定義、圖像、特征、性質(zhì)等。在復習中,可以先通過例題來理解和掌握這些概念,再通過練習題來提高運用的能力。同時,在整個學習過程中,也要注重對不同概念的聯(lián)系和區(qū)別進行理解和掌握,以便更加深入地理解二次函數(shù)。
第三段:熟練掌握變形公式
在學習二次函數(shù)時,不可避免地需要掌握各種變形公式。這些公式可以幫助我們在解題中靈活運用,提高效率。比如平移、伸縮、反演等公式,要熟練掌握它們的求法和應(yīng)用場景。同時,還要注意不同變形公式之間的關(guān)聯(lián),這對于把復雜的應(yīng)用題簡化和解題起到了很大的幫助作用。
第四段:強化應(yīng)用場景
二次函數(shù)在生活和工作中都有廣泛的應(yīng)用場景,比如建模、優(yōu)化等。因此,在復習時,還要注重在各種場景中進行強化練習。這樣可以幫助我們更好地理解二次函數(shù)在實踐中的應(yīng)用,提高應(yīng)用題的解題能力。同時,也可以從不同場景中找到不同的解題思路,使自己的思維更加靈活多變。
第五段:總結(jié)
備考二次函數(shù)不是一朝一夕的事情,需要有計劃、有方法地去復習和提高。在整個復習的過程中,應(yīng)注重基本概念的理解、變形公式的熟練掌握、應(yīng)用場景的強化練習。只有通過不斷的努力和實際的練習,才能真正掌握這個知識點,并在考試中得到更好的成績。同時,在復習的過程中,也要注意適當?shù)男菹⒑驼{(diào)整,保持好心態(tài)和積極的狀態(tài)。
二次函數(shù)心得體會篇三
第二十六章《二次函數(shù)》是學生學習了正比例函數(shù)、一次函數(shù)和反比例函數(shù)以后,進一步學習函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié)。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學模型,它既是其他學科研究時所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學模型。和一次函數(shù)、反比例函數(shù)一樣,二次函數(shù)也是一種非常基本的初等函數(shù),對二次函數(shù)的研究將為學生進一步學習函數(shù)、體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗。
下面是我通過本單元的的教學后的的幾點反思: “二次函數(shù)概念”教學反思
關(guān)于“二次函數(shù)概念”教后做如下反思:我的成功之處是:教學時,通過實例引入二次函數(shù)的概念, 讓學生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學模型。通過學習求一些簡單的實際問題中二次函數(shù)的解析式和它的定義域;大部分學生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學習過程中,讓學生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。絕大多數(shù)學生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達式以及二次項和二次項的系數(shù)、一次項和一次項的系數(shù)及常數(shù)項。
關(guān)于“二次函數(shù)的圖象和性質(zhì)”教后做如下反思:我的成功之處是:在教學中我采用了體驗探究的教學方式,在教師的配合引導下,讓學生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導引探"的教學理念。
通過引導學生在坐標紙上畫出二次函數(shù)y=ax2的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導學生取點的,其間我引導學生要明確取點注意的事項,比如代表性、易操作性。學生在我的引導下順利地畫出了函數(shù)的圖象。緊接著我讓學生觀察圖像自主探討當a0時函數(shù)y=ax2的性質(zhì)。當a
y=a(x-h)
2、y=a(x-h)2+c 的圖像,絕大多數(shù)學生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì)。達到了學習目標中的要求。
不足之處表現(xiàn)在:
1、課堂上講的太多。讓學生自主觀察總結(jié)的機會少,學生還是被動的接受。
2、學生作圖能力差。簡單的列表、描點、連線。學生做起來就比較困難。作圖中單位長度不準確,描點不正確,連線時不會用光滑的曲線,而是畫出很難看的圖形。
3、合作學習的有效性不夠。對于老師提出的問題,各組匯報討論結(jié)果的效果不明顯。說明自主、探究、合作的學習方式?jīng)]有落到實處,沒能培養(yǎng)學生的創(chuàng)新能力。
4、少數(shù)學生二次函數(shù)圖像平移變換能力差。不會進行二次函數(shù)圖像的平移變換。
“求二次函數(shù)解析式”教學反思
關(guān)于“求二次函數(shù)解析式”教后做如下反思:我的成功之處是:教學中,我設(shè)計從求一次函數(shù)的解析式入手,引出求二次函數(shù)一般解析式的方法。學生把已知點代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學生很快就理解了求二次函數(shù)一般解析式的方法。接著我改變條件,給出拋物線的頂點坐標和經(jīng)過拋物線的一個點,引導學生設(shè)頂點式的二次函數(shù)解析式,學生在老師的點撥下,將已知點代入,很快球出了頂點式的二次函數(shù)解析式。接下來,我又引導學生觀察拋物線與x軸的交點,啟發(fā)學生設(shè)交點式解析式,學生很快就學會了用交點式求二次函數(shù)解析式的方法。在整個教學中,教學內(nèi)容、教學環(huán)節(jié)、教學方法的設(shè)計都算完美,在教學目標的制定和教學重點、難點的把握上也很準確,調(diào)動學生學習的積極性和主動性,所以教學非常流暢,效果不錯,目標的達成度較高。
不足之處表現(xiàn)在:
1、學生對新學知識理解了,但一部分學生不會解三元一次方程組。
2、少數(shù)學生對求頂點式和交點式的二次函數(shù)解析式有困難。
3、由于對學生估計不足,引導學生探究三種不同形式的函數(shù)解析式的方法用時較多,導致教學時間緊張。
“二次函數(shù)應(yīng)用題”教學反思
關(guān)于“二次函數(shù)應(yīng)用題”教后做如下反思:我的成功之處是:一開始我引導學生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式,并說出它們各自的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標,最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。然后出示問題,對于這個問題,不少學生表情凝重,目光迷惘,思路不暢,不知從何處下手。我反復引導學生建立平面直角坐標系,分析解決問題的方法。學生從直角坐標系中發(fā)現(xiàn)了拋物線上的點,我進一步引導學生找拋物線的頂點坐標,在老師的引導下,學生設(shè)出了二次函數(shù)的解析式,并將找到的已知點代入,求出了二次函數(shù)的解析式。接著我引導學生就同一問題建立不同的直角坐標系,再去找拋物線上的已知點,這是學生找到了已知點,就能判斷用哪種解析式,試著求出函數(shù)的解析式。接下來,再出示例題,引導學生分析解答。學生從上面的解題過程中得到了啟示,學到了解題方法。教學中,我從學生的實際出發(fā),幫助學生解決學習中的困難,啟發(fā)和引導學生觀察二次函數(shù)圖像,對圖像進行分析,得出解決問題的方案。所以教學方法的設(shè)計較完美,并且教學重點、難點把握的較準確,同時調(diào)動大多數(shù)學生學習的積極性和主動性,所以較好的達到教學目標。
不足之處表現(xiàn)在:
1、少數(shù)學生對于建立平面直角坐標系有困難。不會根據(jù)拋物線正確建立坐標系
2、少數(shù)學生不會分析題意,不能正確列式求出二次函數(shù)的解析式
3、學生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點坐標求二次函數(shù)解析式,學生解三元一次方程組感到困難等。
4、少數(shù)學生不會將二次函數(shù)的一般式配方轉(zhuǎn)化為頂點式;不會利用頂點式求函數(shù)的最大值或最小值。
總之,本單元的教學,雖取得了一些成績。但也暴露出了許多問題。今后在教學中我一定吸取教訓,努力改正自己的不足,提高自己的教學上水平。
二次函數(shù)心得體會篇四
學習數(shù)學,二次函數(shù)是一個不可避免的話題。它是高中數(shù)學中的一個重要部分。學好二次函數(shù)的知識對于學生來說非常有必要,不僅可以提高數(shù)學成績,也可以應(yīng)用到實際生活中。然而,二次函數(shù)不是一項輕松的任務(wù)。在備考二次函數(shù)的過程中,我積攢了一些心得體會,想和大家分享一下。
第二段:正文1——建立數(shù)學思維
在備考二次函數(shù)的過程中,首先要建立數(shù)學思維。這是因為二次函數(shù)是數(shù)學中的一門較為抽象的學問,需要更強的邏輯性和抽象思維能力。我們需要通過理解和掌握二次函數(shù)的概念和方法,進一步發(fā)展數(shù)學思維,提高數(shù)學素養(yǎng)。我們可以從一些簡單的例子入手,逐漸熟悉二次函數(shù)的表達式和圖像,明確二次函數(shù)的定義和范圍。
第三段:正文2——切實掌握知識點
掌握二次函數(shù)的知識點是備考的核心,因此在備考中務(wù)必要認真、深度地學習二次函數(shù)。這需要我們掌握二次函數(shù)的特征和性質(zhì),深入理解其圖像、根、頂點、對稱軸等概念。在實踐中,我們需要通過做題來加深對知識點的理解和掌握。同時,我們可以適當畫圖、動手操作等方式,加深對二次函數(shù)的認識,激發(fā)學習興趣,提升學習效率。
第四段:正文3——練習和提高能力
在備考二次函數(shù)中,大量的練習是必不可少的。我們可以系統(tǒng)地做一些例題、習題和試卷,逐步提高自己的應(yīng)試能力。而且要注意實踐中的方法和技巧,如觀察題目中的特征信息,靈活應(yīng)用解題方法,正確理解題意,等等。除此之外,我們可以多了解一些數(shù)學應(yīng)用知識,培養(yǎng)邏輯思維能力和判斷力,從而提高實際生活中解決問題的能力。
第五段:總結(jié)
備考二次函數(shù),需要我們建立數(shù)學思維,掌握知識點,練習和提高能力。而這些在一定程度上也反映出了數(shù)學學習的方法和精神。不論是備考二次函數(shù),還是學習其它數(shù)學知識,我們都應(yīng)該在學習中體會學習的樂趣、深度、廣度和實際價值。當我們克服了困難,真正掌握了二次函數(shù)的知識,我們就會發(fā)現(xiàn)數(shù)學之美。
二次函數(shù)心得體會篇五
在高中數(shù)學教學中,二次函數(shù)是一個十分重要的內(nèi)容,因為它在生活中有著廣泛的應(yīng)用。其中一項常見的應(yīng)用就是在測量中。通過實驗數(shù)據(jù),我們可以得到一個二次函數(shù)的模型,從而對實驗數(shù)據(jù)進行預測和分析。在我學習二次函數(shù)的過程中,也有幸進行了一些測量實驗,并對二次函數(shù)的應(yīng)用有了更深刻的體會。
第二段:實驗過程
實驗過程中,我選擇了拋物線的測量,通過測量物體的高度、時間和落地點坐標,我們可以得到一個二次函數(shù)的模型,從而計算出物體的初始速度、最大高度等一系列數(shù)據(jù)。在測量過程中,我們需要非常仔細地進行實驗,例如保證實驗地點平整、避免風的影響等。同時還需要使用專業(yè)的測量設(shè)備,例如光電門、計時器等。
第三段:實驗數(shù)據(jù)
通過實驗得到的數(shù)據(jù),我們可以將其代入二次函數(shù)的模型中,從而得出真實的情況。通過這些數(shù)據(jù),我們可以進行更多的分析,例如繪制出物體的拋物線軌跡圖、比較不同物體的拋物線圖形、計算出物理量等。這些數(shù)據(jù)不僅可以用于學術(shù)研究,也可以應(yīng)用到實際生活中,例如建造各種結(jié)構(gòu)或者選購適當?shù)墓ぞ叩取?/p>
第四段:二次函數(shù)的應(yīng)用
二次函數(shù)在生活中有著廣泛的應(yīng)用。例如在物理學中,我們經(jīng)常使用二次函數(shù)來計算物體的運動情況;在經(jīng)濟學中,我們可以利用二次函數(shù)來研究產(chǎn)品銷量與銷售價格的關(guān)系等。二次函數(shù)也常常被應(yīng)用到工程設(shè)計中,因為它可以很好地表示眾多物理量的關(guān)系。這些應(yīng)用都需要我們深入理解二次函數(shù),從而得出更為準確和實用的數(shù)據(jù)。
第五段:結(jié)論
二次函數(shù)測量實驗不僅需要我們對數(shù)學知識的掌握,還需要我們有耐心和細心地分析實驗數(shù)據(jù)。通過實驗,我們可以更深刻地理解二次函數(shù),掌握其應(yīng)用技巧,并將其運用到更多領(lǐng)域中。在今后學習過程中,我們應(yīng)該對二次函數(shù)的知識保持持續(xù)關(guān)注和深入學習,從而更好地理解它的神奇之處。
二次函數(shù)心得體會篇六
標簽:
教學反思:
今天,領(lǐng)著學生復習了二次函數(shù)的知識。本節(jié)知識是中考考點之一,往往與其他知識綜合在一起作為中考壓軸題,因此要求學生重點掌握的有以下幾個內(nèi)容:
1、二次函數(shù)圖像的性質(zhì)。
2、二次函數(shù)的實際應(yīng)用。
在復習與練習的過程中,我發(fā)現(xiàn)學生存在著這樣幾個問題。
1、某些記憶性的知識沒記住。
3、學生的識圖能力、讀題能力與分析問題解決問題的能力較弱。
4、解題過程寫得不全面,丟三落四的現(xiàn)象嚴重。
針對上述問題,需要采取的措施與方法是:
1、根據(jù)實際情況,對于中考升學有希望的學生利用課余時間做好他們的思
想工作。并對他們進行面對面的單獨輔導,增強他們的自信心,以此來提高他們的數(shù)學成績。
2、結(jié)合自己的學習經(jīng)驗對他們進行學法指導和解題技巧的指導。
3、根據(jù)不同的學生情況,搜集典型題讓他們單獨做,并給予及時的輔導與
矯正。
4、與其它任課教師聯(lián)手一起想對策,指導學生讀題的方法與分析問題,解
決問題的方法。
5、無論是做練習還是考試之前,都告訴學生要認真仔細的讀題,從圖形中
獲取信息。
二次函數(shù)心得體會篇七
《二次函數(shù)的應(yīng)用教學反思》教學反思
二次函數(shù)的應(yīng)用是在學習二次函數(shù)的圖像與性質(zhì)后,檢驗學生應(yīng)用所學知識解決實際問題能力的一個綜合考查,它是本章的難點。新的課程標準要求學生能通過對實際問題的情境的分析確定二次函數(shù)的表達式,體會其意義,能根據(jù)圖像的性質(zhì)解決簡單的實際問題,而最大值問題是生活中利用二次函數(shù)知識解決最常見、最有實際應(yīng)用價值的問題,它生活背景豐富,學生比較感興趣。本節(jié)課通過學習求水流的最高點問題,引導學生將實際問題轉(zhuǎn)化為數(shù)學模型,利用數(shù)學建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問題。此部分內(nèi)容是學習一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學習更多函數(shù)打下堅實的基礎(chǔ)。
由于本節(jié)課是二次函數(shù)的應(yīng)用問題,重在通過學習總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學活動,以學生動手動腦探究為主,充分調(diào)動學生學習積極性和主動性,突出學生的主體地位,達到“不但使學生學會,而且使學生會學”的目的。
不足之處:《數(shù)學課程標準》提出:教師不僅是學生的引導者,也是學生的合作者。教學中,要讓學生通過自主討論、交流,來探究學習中碰到的問題、難題,教師從中點撥、引導,并和學生一起學習探討。在本節(jié)課的教學中,教師引導學生較多,沒有完全放開讓學生自主探究學習,獲得新知;學生在數(shù)學學習中還是有較強的依賴性,教師要有意培養(yǎng)學生自主學習的能力。
教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學生,更需要教師具有豐富的科學文化知識,這樣才能使我們的學生在輕松活躍的課堂上找到學習的樂趣與興趣。
二次函數(shù)心得體會篇八
二次函數(shù)是高中數(shù)學中學習的一個重要的內(nèi)容,它不僅在科學、工程、經(jīng)濟等領(lǐng)域有著廣泛的應(yīng)用,同時還是求解各種問題的重要工具。而在實際生活中,二次函數(shù)也有很多的運用,比如在建筑工程中求解拋物線或拱形物體的形狀,或者輔助醫(yī)學人員測量人體數(shù)據(jù)。本文主要通過個人的學習經(jīng)歷和應(yīng)用實踐,分享一些關(guān)于二次函數(shù)的測量心得體會。
第二段:學習與掌握
學習二次函數(shù)時,我們首先需要掌握函數(shù)的基本知識,包括函數(shù)的定義、性質(zhì)、圖像等。同時,我們還需要深入理解二次函數(shù)的特點和應(yīng)用,掌握二次函數(shù)的變形、平移、縮放等技巧,以及如何利用二次函數(shù)求解實際問題。學習這些內(nèi)容需要不斷進行練習和實踐,比如做習題、探究性的實驗、運用軟件進行模擬演示等等,重復操作帶有相同的參數(shù)值可以讓我們更好的掌握常見的二次函數(shù)特征,加上多樣的實驗可以對二次函數(shù)的應(yīng)用產(chǎn)生更深刻的理解,這就需要我們對二次函數(shù)的學習持續(xù)耐心而扎實的進行。
第三段:應(yīng)用實踐
在實際應(yīng)用中,我們可以將二次函數(shù)用于體育鍛煉、醫(yī)療測量和建筑工程中。比如在體育鍛煉中,通過二次函數(shù)的分析和擬合,可以幫助運動員更好地制定訓練計劃,提高訓練效果。在醫(yī)療測量中,利用二次函數(shù)可以輔助醫(yī)生測量患者的生理數(shù)據(jù),包括身高、重量、頭圍等,進而準確地了解患者的生理狀況。此外,在建筑工程中,二次函數(shù)可以用于分析建筑物的結(jié)構(gòu)和穩(wěn)定性,以及制定建筑物的施工計劃。
第四段:心得體會
在我個人的學習和實踐過程中,我深刻感受到了二次函數(shù)的應(yīng)用價值和實際意義。通過學習二次函數(shù),我打開了一扇通向科學和技術(shù)的大門,對數(shù)學的意義和價值有了更深刻的認識。同時,在實踐應(yīng)用中,我深刻領(lǐng)悟到只有將理論知識和實際問題相結(jié)合,才能更好地理解和應(yīng)用二次函數(shù),因此,對于二次函數(shù)的學習和掌握,不僅需要理論知識,更需要大量的實踐和探究。
第五段:總結(jié)與展望
在二次函數(shù)的學習中,我們需要認真掌握函數(shù)的基本知識和應(yīng)用技巧,多進行實踐和探究,結(jié)合實際問題進行分析和求解。通過不斷的練習和實踐,提高我們對于二次函數(shù)的認識和掌握,幫助我們更好地應(yīng)用二次函數(shù)解決實際問題。 總而言之,在二次函數(shù)的學習和實踐過程中,我們需要深入理解其意義和應(yīng)用價值,并結(jié)合具體問題和應(yīng)用場景進行掌握,以此提高我們對數(shù)學進行應(yīng)用和創(chuàng)新的能力。
二次函數(shù)心得體會篇九
11月18日,我在九年三班上了《2.1 二次函數(shù)所描述的關(guān)系》這節(jié)課,結(jié)合一些聽課老師的建議,現(xiàn)
總結(jié)
教學反思如下:1.對二次函數(shù)的學習,本節(jié)課通過豐富的現(xiàn)實背景和學生感興趣的問題出發(fā),以多媒體演示圖片的形式使學生感受二次函數(shù)的意義,感受數(shù)學的廣泛聯(lián)系和應(yīng)用價值。對二次函數(shù)的學習,通過學生的探究性活動,通過學生之間的合作與交流,通過分析實際問題,如探究面積問題,利息問題、觀察表格找規(guī)律及用關(guān)系式表示這些關(guān)系的過程,引出二次函數(shù)的概念,使學生感受二次函數(shù)與生活的密切聯(lián)系。
2.在新知鞏固環(huán)節(jié),我精心設(shè)計了具有代表性和易錯題型的問題,鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學效果。
3.在合作討論的環(huán)節(jié)中,銀行利率問題中文字敘述不夠嚴密,兩年后的利息一句產(chǎn)生分歧,應(yīng)該改成第二年的利息。
4.在課堂時間的安排上不算太合理,有一道能力提升的問題沒講??傊?,通過本節(jié)課,讓我真正意識到:對于每節(jié)課的教學不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學生的情況注意靈活處理課堂生成。課堂上在進行分組教學時,提前預設(shè)好教學時間,在每節(jié)課上,既要放的開,同時又要注意在適當?shù)臅r機收回,以保證每節(jié)教學基本任務(wù)完成。
二次函數(shù)心得體會篇十
近日,我在數(shù)學課上進行了二次函數(shù)的復習,通過這一過程,我深深體會到了二次函數(shù)的重要性和應(yīng)用價值。以下是我對此的心得體會。
在復習過程中,我首先意識到了二次函數(shù)在現(xiàn)實中的廣泛應(yīng)用。二次函數(shù)可以描述物理學、經(jīng)濟學、生物學等各個領(lǐng)域的現(xiàn)象。例如,在物理學中,拋物線的軌跡就可以由二次函數(shù)來描述。另外,數(shù)學模型也常常采用二次函數(shù)來分析和預測實際問題的發(fā)展趨勢。因此,了解和掌握二次函數(shù)的知識對我們理解和處理各種實際問題具有重要意義。
其次,我對二次函數(shù)的圖像和性質(zhì)有了更深入的認識。通過畫圖和求解方程,我發(fā)現(xiàn)二次函數(shù)的圖像是一個拋物線。這個拋物線在坐標軸上的交點稱為零點,也就是方程的解。而頂點則是拋物線的最高點(對于開口向上的拋物線)或最低點(對于開口向下的拋物線)。了解這些性質(zhì)有助于我們更方便地分析和解決問題,比如在最值求解或方程解析方面。
進一步地,我也深入研究了二次函數(shù)的預測和建模。通過給定一些歷史數(shù)據(jù),我們可以使用二次函數(shù)來預測未來的趨勢和結(jié)果。例如,在經(jīng)濟學中,我們可以利用二次函數(shù)來預測某個市場的發(fā)展趨勢,幫助企業(yè)做出更準確的決策。此外,二次函數(shù)還可以用于優(yōu)化問題的建模,比如求解最值問題。通過對二次函數(shù)進行求導,我們可以得到函數(shù)的最值點,從而可以找到問題的最優(yōu)解。
最后,我認識到二次函數(shù)對于我們的數(shù)學思維能力和解決問題的能力的培養(yǎng)具有重要意義。在學習二次函數(shù)的過程中,我們需要通過觀察和分析,運用數(shù)學知識來解決問題。這種思維方式的培養(yǎng),不僅可以幫助我們更好地理解和掌握二次函數(shù),還可以提升我們的數(shù)學思維能力,培養(yǎng)良好的邏輯思維和問題解決能力。這對于我們未來的學習和工作都十分重要。
通過本次二次函數(shù)的復習,我對二次函數(shù)的重要性和應(yīng)用價值有了更深入的理解。在實際生活中,我們不僅要關(guān)注數(shù)學知識的學習和應(yīng)用,更要培養(yǎng)好的數(shù)學思維能力和解決問題的能力。只有這樣,我們才能更好地應(yīng)對未來的挑戰(zhàn),發(fā)現(xiàn)數(shù)學背后的美妙和智慧。
二次函數(shù)心得體會篇十一
讓學生經(jīng)歷根據(jù)不同的條件,利用待定系數(shù)法求二次函數(shù)的函數(shù)關(guān)系式。
:二次函數(shù)表達式的形式的選擇
:各種隱含條件的挖掘
:引導發(fā)現(xiàn)法
(一)診斷補償,情景引入:
1、二次函數(shù)的一般式是什么
2、二次函數(shù)的圖象及性質(zhì)
(先讓學生復習,然后提問,并做進一步診斷)
(二)問題導航,探究釋疑:
(三)精講提煉,揭示本質(zhì):
分析如圖,以ab的垂直平分線為y軸,以過點o的y軸的垂線為x軸,建立了直角坐標系。這時,涵洞所在的拋物線的頂點在原點,對稱軸是y軸,開口向下,所以可設(shè)它的函數(shù)關(guān)系式是。此時只需拋物線上的一個點就能求出拋物線的函數(shù)關(guān)系式。
解由題意,得點b的坐標為(0。8,-2。4),
又因為點b在拋物線上,將它的坐標代入,得所以因此,函數(shù)關(guān)系式是。
例2、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點a(0,-1)、b(1,0)、c(-1,2);
(2)已知拋物線的頂點為(1,-3),且與y軸交于點(0,1);
(3)已知拋物線與x軸交于點m(-3,0)(5,0)且與y軸交于點(0,-3);
(4)已知拋物線的頂點為(3,-2),且與x軸兩交點間的距離為4。
分析(1)根據(jù)二次函數(shù)的圖象經(jīng)過三個已知點,可設(shè)函數(shù)關(guān)系式為的形式;(2)根據(jù)已知拋物線的頂點坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(3)根據(jù)拋物線與x軸的兩個交點的坐標,可設(shè)函數(shù)關(guān)系式為,再根據(jù)拋物線與y軸的交點可求出a的值;(4)根據(jù)已知拋物線的頂點坐標(3,-2),可設(shè)函數(shù)關(guān)系式為,同時可知拋物線的對稱軸為x=3,再由與x軸兩交點間的距離為4,可得拋物線與x軸的兩個交點為(1,0)和(5,0),任選一個代入,即可求出a的值。
解這個方程組,得a=2,b= -1。
所以,所求二次函數(shù)的關(guān)系式是。
(2)因為拋物線的頂點為(1,-3),所以設(shè)二此函數(shù)的關(guān)系式為,又由于拋物線與y軸交于點(0,1),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
(3)因為拋物線與x軸交于點m(-3,0)、(5,0),
所以設(shè)二此函數(shù)的關(guān)系式為。
又由于拋物線與y軸交于點(0,3),可以得到解得。
所以,所求二次函數(shù)的關(guān)系式是。
(4)根據(jù)前面的分析,本題已轉(zhuǎn)化為與(2)相同的題型請同學們自己完成。
(四)題組訓練,拓展遷移:
1、根據(jù)下列條件,分別求出對應(yīng)的二次函數(shù)的關(guān)系式。
(1)已知二次函數(shù)的圖象經(jīng)過點(0,2)、(1,1)、(3,5);
(2)已知拋物線的頂點為(-1,2),且過點(2,1);
(3)已知拋物線與x軸交于點m(-1,0)、(2,0),且經(jīng)過點(1,2)。
2、二次函數(shù)圖象的對稱軸是x= -1,與y軸交點的縱坐標是–6,且經(jīng)過點(2,10),求此二次函數(shù)的關(guān)系式。
(五)交流評價,深化知識:
確定二此函數(shù)的關(guān)系式的一般方法是待定系數(shù)法,在選擇把二次函數(shù)的關(guān)系式設(shè)成什么形式時,可根據(jù)題目中的條件靈活選擇,以簡單為原則。二次函數(shù)的關(guān)系式可設(shè)如下三種形式:(1)一般式:,給出三點坐標可利用此式來求。
(2)頂點式:,給出兩點,且其中一點為頂點時可利用此式來求。
(3)交點式:,給出三點,其中兩點為與x軸的兩個交點、時可利用此式來求。
本課課外作業(yè)1。已知二次函數(shù)的圖象經(jīng)過點a(-1,12)、b(2,-3),
(1)求該二次函數(shù)的關(guān)系式;
(2)用配方法把(1)所得的函數(shù)關(guān)系式化成的形式,并求出該拋物線的頂點坐標和對稱軸。
二次函數(shù)心得體會篇十二
1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會方程與函數(shù)之間的聯(lián)系.
3.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.體會方程與函數(shù)之間的聯(lián)系。
2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根。
1.探索方程與函數(shù)之間關(guān)系的過程。
2.理解二次函數(shù)與x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系。
啟發(fā)引導 合作交流
課件
計算機、實物投影。
檢查預習 引出課題
1.解方程:(1)x2+x-2=0; (2) x2-6x+9=0; (3) x2-x+1=0; (4) x2-2x-2=0.
2. 回顧一次函數(shù)與一元一次方程的關(guān)系,利用函數(shù)的圖象求方程3x-4=0的解.
教師展示預習作業(yè)的內(nèi)容,指名回答,師生共同回顧舊知,教師做出適當總結(jié)和評價。
學生回答問題結(jié)論準確性,能否把前后知識聯(lián)系起來,2題的格式要規(guī)范。
這兩道預習題目是對舊知識的回顧,為本課的教學起到鋪墊的作用,1題中的三個方程是課本中觀察欄目中的三個函數(shù)式的變式,這三個方程把二次方程的根的三種情況體現(xiàn)出來,讓學生回顧二次方程的相關(guān)知識;2題是一次函數(shù)與一元一次方程的關(guān)系的問題,這題的設(shè)計是讓學生用學過的熟悉的知識類比探究本課新知識。