作為一名默默奉獻(xiàn)的教育工作者,通常需要用到教案來(lái)輔助教學(xué),借助教案可以讓教學(xué)工作更科學(xué)化。那么我們?cè)撊绾螌?xiě)一篇較為完美的教案呢?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對(duì)大家能夠有所幫助。
高中數(shù)學(xué)教案簡(jiǎn)案篇一
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問(wèn)題的能力及數(shù)形結(jié)合思想。
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無(wú)限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
1、問(wèn)題情境。
如何精確地刻畫(huà)曲線上某一點(diǎn)處的變化趨勢(shì)呢?
如果將點(diǎn)p附近的曲線放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)p附近看上去有點(diǎn)像是直線。
如果將點(diǎn)p附近的曲線再放大,那么就會(huì)發(fā)現(xiàn),曲線在點(diǎn)p附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)p附近將逼近一條確定的直線,該直線是經(jīng)過(guò)點(diǎn)p的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)p附近我們可以用這條直線來(lái)代替曲線,也就是說(shuō),點(diǎn)p附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動(dòng)。
如圖所示,直線l1,l2為經(jīng)過(guò)曲線上一點(diǎn)p的兩條直線,
(1)試判斷哪一條直線在點(diǎn)p附近更加逼近曲線;
(2)在點(diǎn)p附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?
(3)在點(diǎn)p附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
切線定義: 如圖,設(shè)q為曲線c上不同于p的一點(diǎn),直線pq稱為曲線的割線。 隨著點(diǎn)q沿曲線c向點(diǎn)p運(yùn)動(dòng),割線pq在點(diǎn)p附近逼近曲線c,當(dāng)點(diǎn)q無(wú)限逼近點(diǎn)p時(shí),直線pq最終就成為經(jīng)過(guò)點(diǎn)p處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)p處的切線。這種方法叫割線逼近切線。
思考:如上圖,p為已知曲線c上的一點(diǎn),如何求出點(diǎn)p處的切線方程?
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)p(2,4),q(xq,f(xq)),
則割線pq的斜率為:
當(dāng)q沿曲線逼近點(diǎn)p時(shí),割線pq逼近點(diǎn)p處的切線,從而割線斜率逼近切線斜率;
當(dāng)q點(diǎn)橫坐標(biāo)無(wú)限趨近于p點(diǎn)橫坐標(biāo)時(shí),即xq無(wú)限趨近于2時(shí),kpq無(wú)限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)p(2,4),q(xq,xq2),則割線pq的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kpq無(wú)限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)p(1,2),q(1+δx,(1+δx)2+1),則割線pq的斜率為:
當(dāng)?x無(wú)限趨近于0時(shí),kpq無(wú)限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
(1)找到定點(diǎn)p的坐標(biāo),設(shè)出動(dòng)點(diǎn)q的坐標(biāo);
(2)求出割線pq的斜率;
(3)當(dāng)時(shí),割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,p為已知曲線c上的一點(diǎn),如何求出點(diǎn)p處的切線方程?
解 設(shè)
所以,當(dāng)無(wú)限趨近于0時(shí),無(wú)限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
1、曲線上一點(diǎn)p處的切線是過(guò)點(diǎn)p的所有直線中最接近p點(diǎn)附近曲線的直線,則p點(diǎn)處的變化趨勢(shì)可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
高中數(shù)學(xué)教案簡(jiǎn)案篇二
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題。
(2)進(jìn)一步理解曲線的方程和方程的曲線。
(3)初步掌握求曲線方程的方法。
(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力。
教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程。
教學(xué)用具:計(jì)算機(jī)。
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法。
教學(xué)過(guò)程:
【引入】
1、提問(wèn):什么是曲線的方程和方程的曲線。
學(xué)生思考并回答。教師強(qiáng)調(diào)。
2、坐標(biāo)法和解析幾何的意義、基本問(wèn)題。
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門(mén)科學(xué)稱為解析幾何。解析幾何的兩大基本問(wèn)題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程。
(2)通過(guò)方程,研究平面曲線的性質(zhì)。
事實(shí)上,在前邊所學(xué)的直線方程的理論中也有這樣兩個(gè)基本問(wèn)題。而且要先研究如何求出曲線方程,再研究如何用方程研究曲線。本節(jié)課就初步研究曲線方程的求法。
【問(wèn)題】
如何根據(jù)已知條件,求出曲線的方程。
【實(shí)例分析】
例1:設(shè) 、 兩點(diǎn)的坐標(biāo)是 、(3,7),求線段 的垂直平分線 的方程。
首先由學(xué)生分析:根據(jù)直線方程的知識(shí),運(yùn)用點(diǎn)斜式即可解決。
解法一:易求線段 的中點(diǎn)坐標(biāo)為(1,3),
由斜率關(guān)系可求得l的斜率為
于是有
即l的方程為
①
分析、引導(dǎo):上述問(wèn)題是我們?cè)缇蛯W(xué)過(guò)的,用點(diǎn)斜式就可解決??墒?,你們是否想過(guò)①恰好就是所求的嗎?或者說(shuō)①就是直線 的方程?根據(jù)是什么,有證明嗎?
(通過(guò)教師引導(dǎo),是學(xué)生意識(shí)到這是以前沒(méi)有解決的問(wèn)題,應(yīng)該證明,證明的依據(jù)就是定義中的兩條)。
證明:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解。
設(shè) 是線段 的垂直平分線上任意一點(diǎn),則
即
將上式兩邊平方,整理得
這說(shuō)明點(diǎn) 的坐標(biāo) 是方程 的解。
(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
設(shè)點(diǎn) 的坐標(biāo) 是方程①的任意一解,則
到 、 的距離分別為
所以 ,即點(diǎn) 在直線 上。
綜合(1)、(2),①是所求直線的方程。
至此,證明完畢。回顧上述內(nèi)容我們會(huì)發(fā)現(xiàn)一個(gè)有趣的現(xiàn)象:在證明(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解中,設(shè) 是線段 的垂直平分線上任意一點(diǎn),最后得到式子 ,如果去掉腳標(biāo),這不就是所求方程 嗎?可見(jiàn),這個(gè)證明過(guò)程就表明一種求解過(guò)程,下面試試看:
解法二:設(shè) 是線段 的垂直平分線上任意一點(diǎn),也就是點(diǎn) 屬于集合
由兩點(diǎn)間的距離公式,點(diǎn)所適合的條件可表示為
將上式兩邊平方,整理得
果然成功,當(dāng)然也不要忘了證明,即驗(yàn)證兩條是否都滿足。顯然,求解過(guò)程就說(shuō)明第一條是正確的(從這一點(diǎn)看,解法二也比解法一優(yōu)越一些);至于第二條上邊已證。
這樣我們就有兩種求解方程的方法,而且解法二不借助直線方程的理論,又非常自然,還體現(xiàn)了曲線方程定義中點(diǎn)集與對(duì)應(yīng)的思想。因此是個(gè)好方法。
讓我們用這個(gè)方法試解如下問(wèn)題:
例2:點(diǎn) 與兩條互相垂直的直線的距離的積是常數(shù) 求點(diǎn) 的軌跡方程。
分析:這是一個(gè)純粹的幾何問(wèn)題,連坐標(biāo)系都沒(méi)有。所以首先要建立坐標(biāo)系,顯然用已知中兩條互相垂直的直線作坐標(biāo)軸,建立直角坐標(biāo)系。然后仿照例1中的解法進(jìn)行求解。
求解過(guò)程略。
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如 表示曲線上任意一點(diǎn) 的坐標(biāo);
(2)寫(xiě)出適合條件 的點(diǎn) 的集合
;
(3)用坐標(biāo)表示條件 ,列出方程 ;
(4)化方程 為最簡(jiǎn)形式;
(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
一般情況下,求解過(guò)程已表明曲線上的點(diǎn)的坐標(biāo)都是方程的解;如果求解過(guò)程中的轉(zhuǎn)化都是等價(jià)的,那么逆推回去就說(shuō)明以方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。所以,通常情況下證明可省略,不過(guò)特殊情況要說(shuō)明。
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正。
下面再看一個(gè)問(wèn)題:
例3:已知一條曲線在 軸的上方,它上面的每一點(diǎn)到 點(diǎn)的距離減去它到 軸的距離的差都是2,求這條曲線的方程。
【動(dòng)畫(huà)演示】用幾何畫(huà)板演示曲線生成的過(guò)程和形狀,在運(yùn)動(dòng)變化的過(guò)程中尋找關(guān)系。
解:設(shè)點(diǎn) 是曲線上任意一點(diǎn), 軸,垂足是 (如圖2),那么點(diǎn) 屬于集合
由距離公式,點(diǎn) 適合的條件可表示為
①
將①式 移項(xiàng)后再兩邊平方,得
化簡(jiǎn)得
由題意,曲線在 軸的上方,所以 ,雖然原點(diǎn) 的坐標(biāo)(0,0)是這個(gè)方程的解,但不屬于已知曲線,所以曲線的方程應(yīng)為 ,它是關(guān)于 軸對(duì)稱的拋物線,但不包括拋物線的頂點(diǎn),如圖2中所示。
【練習(xí)鞏固】
題目:在正三角形 內(nèi)有一動(dòng)點(diǎn) ,已知 到三個(gè)頂點(diǎn)的距離分別為 、 、 ,且有 ,求點(diǎn) 軌跡方程。
分析、略解:首先應(yīng)建立坐標(biāo)系,以正三角形一邊所在的直線為一個(gè)坐標(biāo)軸,這條邊的垂直平分線為另一個(gè)軸,建立直角坐標(biāo)系比較簡(jiǎn)單,如圖3所示。設(shè) 、 的坐標(biāo)為 、 ,則 的坐標(biāo)為 , 的坐標(biāo)為 。
根據(jù)條件 ,代入坐標(biāo)可得
化簡(jiǎn)得
①
由于題目中要求點(diǎn) 在三角形內(nèi),所以 ,在結(jié)合①式可進(jìn)一步求出 、 的范圍,最后曲線方程可表示為
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問(wèn)題的方法是什么?
(2)如何求曲線的方程?
(3)請(qǐng)對(duì)求解曲線方程的五個(gè)步驟進(jìn)行評(píng)價(jià)。各步驟的作用,哪步重要,哪步應(yīng)注意什么?
【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;