范文為教學(xué)中作為模范的文章,也常常用來(lái)指寫(xiě)作的模板。常常用于文秘寫(xiě)作的參考,也可以作為演講材料編寫(xiě)前的參考。那么我們?cè)撊绾螌?xiě)一篇較為完美的范文呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來(lái)看看吧。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇一
首先,可以聯(lián)系實(shí)際生活。數(shù)學(xué)知識(shí)在生活中有著廣泛的應(yīng)用,與實(shí)際生活有著廣泛的聯(lián)系,在進(jìn)行課堂導(dǎo)入設(shè)計(jì)時(shí),教師可以聯(lián)系學(xué)生的實(shí)際生活,激發(fā)學(xué)生的好奇心。例如在學(xué)習(xí)拋物線的知識(shí)時(shí),可以這樣導(dǎo)入:讓學(xué)生回想一下打籃球的情景,由于場(chǎng)地限制,在課堂上可以用乒乓球代替籃球,做投籃動(dòng)作,讓學(xué)生仔細(xì)觀察籃球(乒乓球)落地時(shí)的軌跡,在學(xué)生積極參討論時(shí),引入拋物線的知識(shí)。在導(dǎo)入中聯(lián)系實(shí)際生活,不僅能夠激發(fā)學(xué)生的興趣,并且能夠拉近學(xué)生與數(shù)學(xué)之間的距離。
其次,教師可以利用數(shù)學(xué)史進(jìn)行導(dǎo)入。數(shù)學(xué)教材中很多知識(shí)都與數(shù)學(xué)史相關(guān),學(xué)生對(duì)這部分知識(shí)充滿興趣,因此在教學(xué)過(guò)程中,教師設(shè)計(jì)課堂導(dǎo)入時(shí)可以從這一點(diǎn)入手,先通過(guò)提問(wèn)或者介紹的方式,讓學(xué)生了解數(shù)學(xué)史上的重大事件和重要人物等,引起學(xué)生的敬佩和仰慕之情,然后引入相關(guān)的數(shù)學(xué)知識(shí)。興趣是最好的老師,在學(xué)生的期待下展開(kāi)數(shù)學(xué)教學(xué),無(wú)疑會(huì)提高課堂教學(xué)效率。課堂導(dǎo)入的方式有很多種,在具體的操作環(huán)節(jié),教師要注意導(dǎo)入方式的多樣性,才能更好地激發(fā)學(xué)生的興趣,在高中數(shù)學(xué)教學(xué)中教師要根據(jù)實(shí)際情況進(jìn)行合理選擇使用。
做好課堂提問(wèn)設(shè)計(jì)
首先,教師要精心設(shè)計(jì)問(wèn)題。提問(wèn)的目的是為了激發(fā)學(xué)生的興趣和思維,因此,教師提問(wèn)的問(wèn)題不能是單調(diào)、重復(fù)的,而應(yīng)該是具有啟發(fā)性和針對(duì)性,能夠激發(fā)學(xué)生的思考,引導(dǎo)學(xué)生進(jìn)行步步深入。最重要的是,教師提出的問(wèn)題要符合學(xué)生的知識(shí)水平和認(rèn)知能力,教師不僅應(yīng)該了解教材,并且要全面了解學(xué)生,這樣才能使提出的問(wèn)題符合學(xué)生的需要。學(xué)生的數(shù)學(xué)水平是不同的,接受能力也有差異,因此教師要注意提出問(wèn)題的層次性,并針對(duì)不同水平的學(xué)生設(shè)計(jì)不同難度的問(wèn)題,促進(jìn)每個(gè)學(xué)生獲得進(jìn)步和發(fā)展。
其次,課堂提問(wèn)的方式要多樣化。如同教學(xué)方式需要多樣化一樣,提問(wèn)的方式也要具有多樣化的特點(diǎn),這樣才能更好地激發(fā)學(xué)生興趣,達(dá)到教學(xué)目的,否則,無(wú)論教師設(shè)計(jì)的問(wèn)題多么巧妙,學(xué)生也會(huì)感到厭煩。根據(jù)問(wèn)題的內(nèi)容和學(xué)生實(shí)際情況,提問(wèn)可以是直接問(wèn)答;可以是導(dǎo)思式;可以教師提問(wèn)、學(xué)生回答;也可以是學(xué)生提問(wèn)、教師回答。在教學(xué)過(guò)程中教師要注意培養(yǎng)學(xué)生的問(wèn)題意識(shí),鼓勵(lì)學(xué)生自己提出問(wèn)題,問(wèn)題是思考的開(kāi)端,對(duì)于學(xué)生來(lái)說(shuō)提出問(wèn)題比解決問(wèn)題更重要,因此,教師要為學(xué)生創(chuàng)造機(jī)會(huì),讓學(xué)生在認(rèn)真閱讀教材的基礎(chǔ)上,根據(jù)自己的理解提出不懂的問(wèn)題。提出的問(wèn)題教師可以進(jìn)行點(diǎn)撥,讓學(xué)生思考,也可以組織學(xué)生進(jìn)行討論,培養(yǎng)學(xué)生分析問(wèn)題和解決問(wèn)題的能力。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇二
新學(xué)期已經(jīng)開(kāi)始,在學(xué)校工作總體思路的.指導(dǎo)下,現(xiàn)將本學(xué)期數(shù)學(xué)組工作進(jìn)行規(guī)劃、設(shè)想,力爭(zhēng)使本學(xué)期的工作扎實(shí)有效,為學(xué)校的發(fā)展做出新的貢獻(xiàn)。
以學(xué)校工作總體思路為指導(dǎo),深入學(xué)習(xí)和貫徹新課程理念,以教育教學(xué)工作為重點(diǎn),優(yōu)化教學(xué)過(guò)程,提高課堂教學(xué)質(zhì)量。結(jié)合數(shù)學(xué)組工作實(shí)際,用心開(kāi)展教育教學(xué)研究活動(dòng),促進(jìn)教師的專業(yè)發(fā)展,學(xué)生各項(xiàng)素質(zhì)的提高,提高數(shù)學(xué)組教研工作水平。
1、加強(qiáng)常規(guī)教學(xué)工作,優(yōu)化教學(xué)過(guò)程,切實(shí)提高課堂教學(xué)質(zhì)量。
2、加強(qiáng)校本教研,用心開(kāi)展教學(xué)研究活動(dòng),鼓勵(lì)教師根據(jù)教學(xué)實(shí)際開(kāi)展教學(xué)研究,透過(guò)撰寫(xiě)教學(xué)反思類文章等促進(jìn)教師的專業(yè)化發(fā)展。
3、掌握現(xiàn)代教育技術(shù),用心開(kāi)展網(wǎng)絡(luò)教研,拓展教研的深度與廣度。
4、組織好學(xué)生的數(shù)學(xué)實(shí)踐活動(dòng),以調(diào)動(dòng)學(xué)生學(xué)習(xí)用心性,豐富學(xué)生課余生活,促進(jìn)其全面發(fā)展。
1、備課做好教學(xué)準(zhǔn)備是上好課的前提,本學(xué)期要求每位教師做好教案、教學(xué)用具、作業(yè)本等準(zhǔn)備,以良好的精神狀態(tài)進(jìn)入課堂。
備課是上好課的基礎(chǔ),本學(xué)期數(shù)學(xué)組仍采用年級(jí)組群眾備課形式,要求教案盡量做到環(huán)節(jié)齊全,反思具體,有價(jià)值。群眾備課時(shí),所有教師務(wù)必做好準(zhǔn)備,每個(gè)單元負(fù)責(zé)教師要提前安排好資料及備課方式,對(duì)于教案中修改或補(bǔ)充的資料要及時(shí)地在旁邊批注,電子教案的可在旁邊用紅色批注(發(fā)布校園網(wǎng)數(shù)學(xué)組板塊內(nèi)),使群眾備課不流于形式,每節(jié)課前都要做到課前的“復(fù)備”。每一位教師在個(gè)人研究和群眾備課的基礎(chǔ)上構(gòu)成適合自己、實(shí)用有效的教案,更好的為課堂教學(xué)服務(wù)。各年級(jí)組每月帶給單元備課活動(dòng)記錄,在規(guī)定的群眾備課時(shí)間,教師無(wú)特殊原因不得缺席。
提高課后反思的質(zhì)量,提倡教學(xué)以后將課堂上精彩的地方進(jìn)行實(shí)錄,以案例形式進(jìn)行剖析。對(duì)于原教案中不合理的及時(shí)記錄,結(jié)合課堂重新修改和設(shè)計(jì),同年級(jí)教師能夠共同反思、共同提高,為以后的教學(xué)帶給借鑒價(jià)值。數(shù)學(xué)教師每周反思不少于2次,每學(xué)期要有1-2篇較高水平的反思或教學(xué)案例,及時(shí)發(fā)布在向校園網(wǎng)上,學(xué)校將及時(shí)進(jìn)行評(píng)審。
教案檢查分平時(shí)抽查和定期檢查兩種形式,“推門課”后教師要及時(shí)帶給本節(jié)課的教案,每月26號(hào)為組內(nèi)統(tǒng)一檢查教案時(shí)間,每月檢查結(jié)果將公布在校園網(wǎng)數(shù)學(xué)組板塊中的留言板中。
2、課堂教學(xué)課堂是教學(xué)的主陣地。教師不但要上好公開(kāi)課,更要上好每一天的“常規(guī)課”。遵守學(xué)校教學(xué)常規(guī)中對(duì)課堂教學(xué)的要求。課堂上要用心的創(chuàng)設(shè)有效的教學(xué)情境,要重視學(xué)習(xí)方法、思考方法的滲透與指導(dǎo),重視數(shù)學(xué)知識(shí)的應(yīng)用性。學(xué)校將繼續(xù)透過(guò)聽(tīng)“推門課”促進(jìn)課堂教學(xué)水平的提高,發(fā)現(xiàn)教學(xué)新秀。公開(kāi)課力求有特點(diǎn),能側(cè)重一個(gè)教學(xué)問(wèn)題,促進(jìn)組內(nèi)教師的研討。一學(xué)期做到每人一節(jié),年輕教師上兩節(jié)。課堂對(duì)于比較成熟的公開(kāi)課或研討課鼓勵(lì)大家錄像,保存資料,及時(shí)地向校園網(wǎng)推薦。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇三
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
(精確到0.001)。
米的速度減少,那么該船在什么時(shí)間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇四
【知識(shí)與技能】
進(jìn)一步掌握直線方程的各種形式,會(huì)根據(jù)條件求直線的方程。
【過(guò)程與方法】
在分析問(wèn)題、動(dòng)手解題的過(guò)程中,提升邏輯思維、計(jì)算能力以及分析問(wèn)題、解決問(wèn)題的能力。
【情感、態(tài)度與價(jià)值觀】
在學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn),增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣與信心。
二、教學(xué)重難點(diǎn)
【重點(diǎn)】根據(jù)條件求直線的方程。
【難點(diǎn)】根據(jù)條件求直線的方程。
三、教學(xué)過(guò)程
(一)課堂導(dǎo)入
直接點(diǎn)明最近學(xué)習(xí)了直線方程的多種形式,這節(jié)課將練習(xí)求直線的方程。
(二)回顧舊知
帶領(lǐng)學(xué)生復(fù)習(xí)回顧直線斜率的求法,以及直線方程的點(diǎn)斜式、兩點(diǎn)式和一般式。
為了加深學(xué)生的運(yùn)用和理解,繼續(xù)引導(dǎo)學(xué)生思考,是否有其他解題思路。預(yù)設(shè)大部分學(xué)生能夠想到用點(diǎn)斜式進(jìn)行計(jì)算。教師肯定學(xué)生想法并組織學(xué)生動(dòng)手計(jì)算,之后請(qǐng)學(xué)生上黑板板演。
預(yù)設(shè)學(xué)生有多種解題方法,如ab、ac所在直線方程用兩點(diǎn)式求解,bc所在直線方程用點(diǎn)斜式求解。
學(xué)生板演后教師講解,點(diǎn)明不足,提示學(xué)生,計(jì)算結(jié)束后要記得將所求得方程整理為直線方程的一般式。
師生總結(jié)解題思路:求直線所在方程時(shí),若給出兩點(diǎn)坐標(biāo),在符合條件的情況下,可直接套用公式,也可利用點(diǎn)斜式進(jìn)行求解,注意一題多解的情況。
(四)小結(jié)作業(yè)
小結(jié):學(xué)生暢談收獲。
作業(yè):完成課后相應(yīng)練習(xí)題,根據(jù)已知條件求直線的方程。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇五
1、在初中學(xué)過(guò)原命題、逆命題知識(shí)的基礎(chǔ)上,初步理解四種命題。
2、給一個(gè)比較簡(jiǎn)單的命題(原命題),可以寫(xiě)出它的逆命題、否命題和逆否命題。
3、通過(guò)對(duì)四種命題之間關(guān)系的學(xué)習(xí),培養(yǎng)學(xué)生邏輯推理能力
4、初步培養(yǎng)學(xué)生反證法的數(shù)學(xué)思維。
二、教學(xué)分析
重點(diǎn):四種命題;難點(diǎn):四種命題的關(guān)系
1、本小節(jié)首先從初中數(shù)學(xué)的命題知識(shí),給出四種命題的概念,接著,講述四種命題的關(guān)系,最后,在初中的基礎(chǔ)上,結(jié)合四種命題的知識(shí),進(jìn)一步講解反證法。
3、“若p則q”形式的命題,也是一種復(fù)合命題,并且,其中的p與q,可以是命題也可以是開(kāi)語(yǔ)句,例如,命題“若,則x,y全為0”,其中的p與q,就是開(kāi)語(yǔ)句。對(duì)學(xué)生,只要求能分清命題“若p則q”中的條件與結(jié)論就可以了,不必考慮p與q是命題,還是開(kāi)語(yǔ)句。
三、教學(xué)手段和方法(演示教學(xué)法和循序漸進(jìn)導(dǎo)入法)
1、以故事形式入題
2、多媒體演示
四、教學(xué)過(guò)程
(一)引入:一個(gè)生活中有趣的與命題有關(guān)的笑話:某人要請(qǐng)甲乙丙丁吃飯,時(shí)間到了,只有甲乙丙三人按時(shí)赴約。丁卻打電話說(shuō)“有事不能參加”主人聽(tīng)了隨口說(shuō)了句“該來(lái)的沒(méi)來(lái)”甲聽(tīng)了臉色一沉,一聲不吭的走了,主人愣了一下又說(shuō)了一句“哎,不該走的走了”乙聽(tīng)了大怒,拂袖即去。主人這時(shí)還沒(méi)意識(shí)到又順口說(shuō)了一句:“俺說(shuō)的又不是你”。這時(shí)丙怒火中燒不辭而別。四個(gè)客人沒(méi)來(lái)的沒(méi)來(lái),來(lái)的又走了。主人請(qǐng)客不成還得罪了三家。大家肯定都覺(jué)得這個(gè)人不會(huì)說(shuō)話,但是你想過(guò)這里面所蘊(yùn)涵的數(shù)學(xué)思想嗎?通過(guò)這節(jié)課的學(xué)習(xí)我們就能揭開(kāi)它的廬山真面,學(xué)生的興奮點(diǎn)被緊緊抓住,躍躍欲試!
設(shè)計(jì)意圖:創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)興趣
(二)復(fù)習(xí)提問(wèn):
1.命題“同位角相等,兩直線平行”的條件與結(jié)論各是什么?
2.把“同位角相等,兩直線平行”看作原命題,它的逆命題是什么?
3.原命題真,逆命題一定真嗎?
學(xué)生活動(dòng):
設(shè)計(jì)意圖:通過(guò)復(fù)習(xí)舊知識(shí),打下學(xué)習(xí)否命題、逆否命題的基礎(chǔ).
(三)新課講解:
1.命題“同位角相等,兩直線平行”的條件是“同位角相等”,結(jié)論是“兩直線平行”;如果把“同位角相等,兩直線平行”看作原命題,它的逆命題就是“兩直線平行,同位角相等”。也就是說(shuō),把原命題的結(jié)論作為條件,條件作為結(jié)論,得到的命題就叫做原命題的逆命題。
2.把命題“同位角相等,兩直線平行”的條件與結(jié)論同時(shí)否定,就得到新命題“同位角不相等,兩直線不平行”,這個(gè)新命題就叫做原命題的否命題。
3.把命題“同位角相等,兩直線平行”的條件與結(jié)論互相交換并同時(shí)否定,就得到新命題“兩直線不平行,同位角不相等”,這個(gè)新命題就叫做原命題的逆否命題。
(四)組織討論:
讓學(xué)生歸納什么是否命題,什么是逆否命題。
例1及例2
學(xué)生活動(dòng):
討論后回答
這兩個(gè)逆否命題都真.
原命題真,逆否命題也真
引導(dǎo)學(xué)生討論原命題的真假與其他三種命題的真
假有什么關(guān)系?舉例加以說(shuō)明,同學(xué)們踴躍發(fā)言。
(六)課堂小結(jié):
1、一般地,用p和q分別表示原命題的條件和結(jié)論,用vp和vq分別表示p和q否定時(shí),四種命題的形式就是:
原命題若p則q;
逆命題若q則p;(交換原命題的條件和結(jié)論)
否命題,若vp則vq;(同時(shí)否定原命題的條件和結(jié)論)
逆否命題若vq則vp。(交換原命題的條件和結(jié)論,并且同時(shí)否定)
2、四種命題的關(guān)系
(1).原命題為真,它的逆命題不一定為真.
(2).原命題為真,它的否命題不一定為真.
(3).原命題為真,它的逆否命題一定為真
(七)回扣引入
分析引入中的笑話,先討論,后總結(jié):現(xiàn)在我們來(lái)分析一下主人說(shuō)的四句話:
第一句:“該來(lái)的沒(méi)來(lái)”
其逆否命題是“不該來(lái)的來(lái)了”,甲認(rèn)為自己是不該來(lái)的,所以甲走了。
第二句:“不該走的走了”,其逆否命題為“該走的沒(méi)走”,乙認(rèn)為自己該走,所以乙也走了。
第三句:“俺說(shuō)的不是你(指乙)”其值為真其非命題:“俺說(shuō)的是你”為假,則說(shuō)的是他(指丙)為真。所以,丙認(rèn)為說(shuō)的是自己,所以丙也走了。
同學(xué)們,生活中處處是數(shù)學(xué),期待我們善于發(fā)現(xiàn)的眼睛
五、作業(yè)
1.設(shè)原命題是“若
斷它們的真假.,則”,寫(xiě)出它的逆命題、否命題與逆否命題,并分別判
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇六
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
解三角形及應(yīng)用舉例
一.基礎(chǔ)知識(shí)精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);利用余弦定理,可以解決以下兩類問(wèn)題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題.
二.問(wèn)題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論.
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市o(如圖)的東偏南方向300 km的海面p處,并以20 km / h的速度向西偏北的方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到臺(tái)風(fēng)的侵襲。
一. 小結(jié):
1.利用正弦定理,可以解決以下兩類問(wèn)題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
2.利用余弦定理,可以解決以下兩類問(wèn)題:
(1)已知三邊,求三角;
(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問(wèn)題常用的手段.
三.作業(yè):p80闖關(guān)訓(xùn)練
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇七
張星,薛永紅
教學(xué)設(shè)計(jì)的優(yōu)劣對(duì)于提高教學(xué)質(zhì)量,培養(yǎng)學(xué)生思維,調(diào)動(dòng)學(xué)生的積極性有著十分重要的意義。在實(shí)施高中數(shù)學(xué)新課改的今天,怎樣完成一個(gè)優(yōu)秀的教學(xué)設(shè)計(jì)呢?我們認(rèn)為應(yīng)該從以下幾個(gè)方面著手:
一、教學(xué)設(shè)計(jì)應(yīng)有利于讓學(xué)生學(xué)會(huì)學(xué)習(xí),發(fā)揮學(xué)生的主體作用
傳統(tǒng)的課堂設(shè)計(jì),常常是“教師問(wèn),學(xué)生答,教師寫(xiě),學(xué)生記,教師考,學(xué)生背?!痹谶@樣教學(xué)下,學(xué)生機(jī)械被動(dòng)地學(xué)習(xí),不能主動(dòng)對(duì)話、溝通、交流。久而久之,他們學(xué)習(xí)數(shù)學(xué)的興趣會(huì)逐漸褪去。新課程標(biāo)準(zhǔn)要求教師必需轉(zhuǎn)變角色,尊重學(xué)生的主體性,以新的理念指導(dǎo)設(shè)計(jì)教學(xué)。在教學(xué)過(guò)程中,要根據(jù)不同學(xué)習(xí)內(nèi)容,使學(xué)習(xí)成為在教師指導(dǎo)下自動(dòng)的、建構(gòu)過(guò)程。教師是教學(xué)過(guò)程的組織者和引導(dǎo)者,教師在設(shè)計(jì)教學(xué)目標(biāo),組織教學(xué)活動(dòng)等方面,應(yīng)面向全體學(xué)生,突出學(xué)生的主體性,充分發(fā)揮學(xué)生的主觀能動(dòng)性,讓學(xué)生自主參與探究問(wèn)題。
二、教學(xué)設(shè)計(jì)應(yīng)注重初高中知識(shí)的銜接問(wèn)題
初高中數(shù)學(xué)存在巨大差異,高中無(wú)論是知識(shí)的深度、難度和廣度,還是能力的要求,都有一次大飛躍。由于大部分學(xué)生不適應(yīng)這樣的變化,又沒(méi)有為此做好充分的準(zhǔn)備,仍然按照初中的思維模式和學(xué)習(xí)方法來(lái)學(xué)習(xí)高中數(shù)學(xué)知識(shí),不能適應(yīng)高中的數(shù)學(xué)教學(xué),于是在學(xué)習(xí)能力有差異的情況下而出現(xiàn)了成績(jī)分化,學(xué)習(xí)情緒急降。作為教師應(yīng)特別關(guān)注此時(shí)的銜接,要充分了解學(xué)生在初中階段學(xué)了哪些內(nèi)容?要求到什么程度?哪些內(nèi)容在高中階段還要繼續(xù)學(xué)習(xí)等等,注意初高中數(shù)學(xué)學(xué)習(xí)方式的銜接,重視培養(yǎng)學(xué)生正確對(duì)待困難和挫折的良好心理素質(zhì),適應(yīng)性能力,重視知識(shí)形成過(guò)程的教學(xué),激發(fā)學(xué)生主動(dòng)的學(xué)習(xí)動(dòng)機(jī),加強(qiáng)學(xué)法指導(dǎo),引導(dǎo)學(xué)生閱讀、歸納、
總結(jié)
,提高學(xué)生的自學(xué)能力,善于思考、勇于鉆研的意識(shí)。三、
教學(xué)設(shè)計(jì)應(yīng)考慮到學(xué)生當(dāng)前的知識(shí)水平我校學(xué)生,大部分是居于中等及以下的學(xué)生,基礎(chǔ)知識(shí)、基本技能、基本數(shù)學(xué)思想方法差,思維能力、運(yùn)算能力較低,空間想象能力以及實(shí)踐和創(chuàng)新意識(shí)能力更無(wú)須談?wù)f。因此數(shù)學(xué)學(xué)習(xí)還處在比較被動(dòng)的狀態(tài),存在問(wèn)題較多,主要表現(xiàn)在:
1、學(xué)習(xí)懶散,不肯動(dòng)腦;
2、不訂計(jì)劃,慣性運(yùn)轉(zhuǎn);
5、死記硬背,機(jī)械模仿,教師講的聽(tīng)得懂,例題看得懂,就是書(shū)上的作業(yè)做不起;
6、不懂不問(wèn),一知半解;
8、不重總結(jié),輕視復(fù)習(xí)。因此教師需多花時(shí)間了解學(xué)生具體情況、學(xué)習(xí)狀態(tài),對(duì)學(xué)生數(shù)學(xué)學(xué)習(xí)方法進(jìn)行指導(dǎo),力求做到轉(zhuǎn)變思想與傳授方法結(jié)合,課上與課下結(jié)合,學(xué)法與教法結(jié)合,統(tǒng)一指導(dǎo)與個(gè)別指導(dǎo)結(jié)合,促進(jìn)學(xué)生掌握正確的學(xué)習(xí)方法。只有憑借著良好的學(xué)習(xí)方法,才能達(dá)到“事半功倍”的學(xué)習(xí)效果。
四、教學(xué)設(shè)計(jì)中教師應(yīng)以科學(xué)的眼光審視教材
高中數(shù)學(xué)新課程是具有厚實(shí)的數(shù)學(xué)專業(yè)和教育教學(xué)理論與實(shí)踐水平的專家群體,經(jīng)過(guò)深思熟慮、系統(tǒng)地分析教學(xué)的情況和學(xué)生的實(shí)際來(lái)編寫(xiě)的。很多內(nèi)容編排很好,我們應(yīng)該尊重教材,但我們不應(yīng)迷信教材,認(rèn)請(qǐng)教材的思路與意圖,理解教材中所蘊(yùn)藏的知識(shí)、技能、情感與價(jià)值等層面上的內(nèi)涵,同時(shí)也應(yīng)該用批判的眼光去審視它,不迷信教材,在此基礎(chǔ)上,要挖掘和超越教材,做到既忠實(shí)教材,又不拘泥于教材,結(jié)合本校、本班學(xué)生的實(shí)際情況,創(chuàng)新出最適合自己所教學(xué)生的題目,啟發(fā)、誘導(dǎo)學(xué)生進(jìn)行深入的體驗(yàn)和感悟,真正做到“走進(jìn)教材,又走出教材?!?/p>
五、教學(xué)設(shè)計(jì)應(yīng)注重新課的導(dǎo)入與新知識(shí)的形成過(guò)程
教師在授課過(guò)程中,應(yīng)適時(shí)、適度地引出新課題,創(chuàng)設(shè)出最佳的教學(xué)氣氛,引起學(xué)生對(duì)本課題的興趣。
常用的課題導(dǎo)入的幾種類型有 1.創(chuàng)設(shè)生產(chǎn)生活化情境導(dǎo)入課題 2.講故事引入課題。
3.設(shè)置懸念,以疑激趣引入課題
六、教學(xué)設(shè)計(jì)應(yīng)注重從學(xué)生的角度進(jìn)行教學(xué)反思
教學(xué)行為的本質(zhì)在于使學(xué)生受益,教得好是為了促進(jìn)學(xué)得好。在講習(xí)題時(shí),當(dāng)我們向?qū)W生介紹一些精巧奇妙的解法時(shí),特別是一些奇思妙解時(shí),學(xué)生表面上聽(tīng)懂了,但當(dāng)他自己解題時(shí)卻茫然失措。我們教師在備課時(shí)把要講的問(wèn)題設(shè)計(jì)的十分精巧,連板書(shū)都設(shè)計(jì)好了,表面上看天衣無(wú)縫,其實(shí),任何人都會(huì)遭遇失敗,教師把自己思維過(guò)程中失敗的部分隱瞞了,最有意義,最有啟發(fā)的東西抽掉了,學(xué)生除了贊嘆我們教師的高超的解題能力以外,又有什么收獲呢?所以貝爾納說(shuō)“構(gòu)成我們學(xué)習(xí)上最大障礙的是已知的東西,而不是未知的東西” 大數(shù)學(xué)家希爾伯特的老師富士在講課時(shí)就常把自己置于困境中,并再現(xiàn)自己從中走出來(lái)的過(guò)程,讓學(xué)生看到老師的真實(shí)思維過(guò)程是怎樣的。人的能力只有在逆境中才能得到最好的鍛煉。經(jīng)常去問(wèn)問(wèn)學(xué)生,對(duì)數(shù)學(xué)學(xué)習(xí)的感受,借助學(xué)生的眼睛看一看自己的教學(xué)行為,是促進(jìn)教學(xué)的必要手段。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇八
1.教師要解放思想,與時(shí)俱進(jìn)。在傳統(tǒng)的高中數(shù)學(xué)教學(xué)中,大多數(shù)教師教學(xué)觀念陳舊,把教科書(shū)當(dāng)成學(xué)生學(xué)習(xí)的惟一對(duì)象,照本宣科,不加分析的滿堂灌,學(xué)生則聽(tīng)得很乏味,感覺(jué)有點(diǎn)看電影。改變教與學(xué)的方式,是高中新課程標(biāo)準(zhǔn)的基本理念,在高中數(shù)學(xué)教學(xué)中,教師應(yīng)把學(xué)生當(dāng)成學(xué)習(xí)的主人,充分挖掘?qū)W生的潛能,處處激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。教師不要大包大攬,把結(jié)論或推理直接展現(xiàn)給學(xué)生,要讓學(xué)生獨(dú)立思考,在此基礎(chǔ)上,讓師生、生生進(jìn)行充分的合作與交流,努力實(shí)現(xiàn)多邊互動(dòng)。積極倡導(dǎo)“自主、合作、探究”的教學(xué)模式。同時(shí)由于學(xué)生認(rèn)知方式、水平、思維策略和學(xué)習(xí)能力的不同,一定會(huì)有個(gè)體差異,所以教師要實(shí)施“差異教學(xué)”使人人參與,人人獲得必需的數(shù)學(xué),這樣也體現(xiàn)了教學(xué)中的民主、平等關(guān)系,采用這樣的教學(xué)方式,學(xué)生的學(xué)習(xí)熱情自然高漲,個(gè)性思維積極活躍,人格發(fā)展自然和諧。
2.學(xué)生要轉(zhuǎn)變學(xué)法,主動(dòng)出擊。鑒于目前的教學(xué)實(shí)際,必須創(chuàng)造條件讓學(xué)生能夠探究他們自己感興趣的問(wèn)題并自主解決問(wèn)題。新的課堂教學(xué)模式的特點(diǎn)關(guān)注學(xué)生的情感體驗(yàn),激發(fā)學(xué)生的愛(ài)國(guó)熱情,創(chuàng)設(shè)良好的教學(xué)情景。滲透了民主平等、自然和諧的教學(xué)思想,注重自主合作與探究生成,重視對(duì)學(xué)生的評(píng)價(jià),把課堂還給學(xué)生,學(xué)生參與的時(shí)間明顯增多,老師們能注重以學(xué)生為主體,師生互動(dòng)形式多樣。讓學(xué)生主動(dòng)站起回答教師提出的問(wèn)題,讓學(xué)生主動(dòng)上臺(tái)演排,讓學(xué)生間相互交流,分組討論,把課堂還給學(xué)生,讓學(xué)生在參與中實(shí)現(xiàn)知識(shí)的生成。
3.課堂要形式多樣,追求高效。新的數(shù)學(xué)課程理念倡導(dǎo)數(shù)學(xué)教學(xué)應(yīng)該根據(jù)不同教學(xué)內(nèi)容的要求,采用不同教學(xué)方式。數(shù)學(xué)課程要講推理,更要講道理。通過(guò)典型例子的分析和學(xué)生自主探索活動(dòng),使學(xué)生理解數(shù)學(xué)概念、結(jié)論的形成過(guò)程,體會(huì)蘊(yùn)涵在其中的思想方法,追尋數(shù)學(xué)發(fā)展的歷史足跡。在內(nèi)容上,新課程注意把算法的內(nèi)容和思想融入到數(shù)學(xué)課程的各個(gè)相關(guān)部分。
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點(diǎn)擊下載文檔
搜索文檔
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇九
教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化
(2)理解直線與二元一次方程的關(guān)系及其證明
教學(xué)用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法
教學(xué)過(guò)程:
下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:
教學(xué)設(shè)計(jì)思路:
(一)引入的設(shè)計(jì)
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:
問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述。再看一個(gè)問(wèn)題:
問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。
啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)??各小組可以討論討論。
學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:
【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路。
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo)。
經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論。首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。
至此,我們的問(wèn)題1就解決了。簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程。而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”。
同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。
啟發(fā):任何一條直線都有這種形式的方程。你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
(1)當(dāng)時(shí),方程可化為
這是表示斜率為、在軸上的截距為的直線。
(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為
這表示一條與軸垂直的直線。
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時(shí)為0)稱作直線方程的一般式是合理。
【動(dòng)畫(huà)演示】
演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線。
至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系。
(三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十
一、教學(xué)內(nèi)容分析
《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)(1)》(人教a版)第44頁(yè)?!秾?shí)習(xí)作業(yè)》。本節(jié)課程體現(xiàn)數(shù)學(xué)文化的特色,學(xué)生通過(guò)了解函數(shù)的發(fā)展歷史進(jìn)一步感受數(shù)學(xué)的魅力。學(xué)生在自己動(dòng)手收集、整理資料信息的過(guò)程中,對(duì)函數(shù)的概念有更深刻的理解;感受新的學(xué)習(xí)方式帶給他們的學(xué)習(xí)數(shù)學(xué)的樂(lè)趣。
二、學(xué)生學(xué)習(xí)情況分析
該內(nèi)容在《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)·數(shù)學(xué)(1)》(人教a版)第44頁(yè)。學(xué)生第一次完成《實(shí)習(xí)作業(yè)》,積極性高,有熱情和新鮮感,但缺乏經(jīng)驗(yàn),所以需要教師精心設(shè)計(jì),做好準(zhǔn)備工作,充分體現(xiàn)教師的“導(dǎo)演”角色。特別在分組時(shí)注意學(xué)生的合理搭配(成績(jī)的好壞、家庭有無(wú)電腦、男女生比例、口頭表達(dá)能力等),選題時(shí),各組之間盡量不要重復(fù),盡量多地選不同的題目,可以讓所有的學(xué)生在學(xué)習(xí)共享的過(guò)程中受到更多的數(shù)學(xué)文化的熏陶。
三、設(shè)計(jì)思想
《標(biāo)準(zhǔn)》強(qiáng)調(diào)數(shù)學(xué)文化的重要作用,體現(xiàn)數(shù)學(xué)的文化的價(jià)值。數(shù)學(xué)教育不僅應(yīng)該幫助學(xué)生學(xué)習(xí)和掌握數(shù)學(xué)知識(shí)和技能,還應(yīng)該有助于學(xué)生了解數(shù)學(xué)的價(jià)值。讓學(xué)生逐步了解數(shù)學(xué)的思想方法、理性精神,體會(huì)數(shù)學(xué)家的創(chuàng)新精神,以及數(shù)學(xué)文明的深刻內(nèi)涵。
四、教學(xué)目標(biāo)
1、了解函數(shù)概念的形成、發(fā)展的歷史以及在這個(gè)過(guò)程中起重大作用的歷史事件和人物;
2、體驗(yàn)合作學(xué)習(xí)的方式,通過(guò)合作學(xué)習(xí)品嘗分享獲得知識(shí)的快樂(lè);
3、在合作形式的小組學(xué)習(xí)活動(dòng)中培養(yǎng)學(xué)生的領(lǐng)導(dǎo)意識(shí)、社會(huì)實(shí)踐技能和民主價(jià)值觀。
五、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):了解函數(shù)在數(shù)學(xué)中的核心地位,以及在生活里的廣泛應(yīng)用;
難點(diǎn):培養(yǎng)學(xué)生合作交流的能力以及收集和處理信息的能力。
六、教學(xué)過(guò)程設(shè)計(jì)
【課堂準(zhǔn)備】
1、分組:4~6人為一個(gè)實(shí)習(xí)小組,確定一人為組長(zhǎng)。教師需要做好協(xié)調(diào)工作,確保每位學(xué)生都參加。
2、選題:根據(jù)個(gè)人興趣初步確定實(shí)習(xí)作業(yè)的題目。教師應(yīng)該到各組中去了解選題情況,盡量多地選擇不同的題目。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十一
教學(xué)目標(biāo):
(1)了解坐標(biāo)法和解析幾何的意義,了解解析幾何的基本問(wèn)題
(2)進(jìn)一步理解曲線的方程和方程的曲線
(3)初步掌握求曲線方程的方法
(4)通過(guò)本節(jié)內(nèi)容的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和轉(zhuǎn)化的能力
教學(xué)重點(diǎn)、難點(diǎn):求曲線的方程
教學(xué)用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法
教學(xué)過(guò)程:
【引入】
1.提問(wèn):什么是曲線的方程和方程的曲線
學(xué)生思考并回答,教師強(qiáng)調(diào)
2.坐標(biāo)法和解析幾何的意義、基本問(wèn)題
對(duì)于一個(gè)幾何問(wèn)題,在建立坐標(biāo)系的基礎(chǔ)上,用坐標(biāo)表示點(diǎn);用方程表示曲線,通過(guò)研究方程的性質(zhì)間接地來(lái)研究曲線的性質(zhì),這一研究幾何問(wèn)題的方法稱為坐標(biāo)法,這門科學(xué)稱為解析幾何,解析幾何的兩大基本問(wèn)題就是:
(1)根據(jù)已知條件,求出表示平面曲線的方程
(2)通過(guò)方程,研究平面曲線的性質(zhì)
【問(wèn)題】
如何根據(jù)已知條件,求出曲線的方程
【概括總結(jié)】通過(guò)學(xué)生討論,師生共同總結(jié):
分析上面兩個(gè)例題的求解過(guò)程,我們總結(jié)一下求解曲線方程的大體步驟:
首先應(yīng)有坐標(biāo)系;其次設(shè)曲線上任意一點(diǎn);然后寫(xiě)出表示曲線的點(diǎn)集;再代入坐標(biāo);最后整理出方程,并證明或修正。說(shuō)得更準(zhǔn)確一點(diǎn)就是:
(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對(duì)例如表示曲線上任意一點(diǎn)的坐標(biāo);
(2)寫(xiě)出適合條件的點(diǎn)的集合;
(3)用坐標(biāo)表示條件,列出方程;
(4)化方程為最簡(jiǎn)形式;
(5)證明以化簡(jiǎn)后的方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn)。
上述五個(gè)步驟可簡(jiǎn)記為:建系設(shè)點(diǎn);寫(xiě)出集合;列方程;化簡(jiǎn);修正
下面再看一個(gè)問(wèn)題:
【小結(jié)】師生共同總結(jié):
(1)解析幾何研究研究問(wèn)題的方法是什么?
(2)如何求曲線的方程?
【作業(yè)】課本第72頁(yè)練習(xí)1,2,3;
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十二
數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過(guò)程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問(wèn)題情境——提出數(shù)學(xué)問(wèn)題——嘗試解決問(wèn)題——驗(yàn)證解決方法”為主,主要采用觀察、啟發(fā)、類比、引導(dǎo)、探索相結(jié)合的教學(xué)方法。在教學(xué)手段上,則采用多媒體輔助教學(xué),將抽象問(wèn)題形象化,使教學(xué)目標(biāo)體現(xiàn)的更加完美。
三角函數(shù)的誘導(dǎo)公式是普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(人教a版)數(shù)學(xué)必修四,第一章第三節(jié)的內(nèi)容,其主要內(nèi)容是三角函數(shù)誘導(dǎo)公式中的公式(二)至公式(六).本節(jié)是第一課時(shí),教學(xué)內(nèi)容為公式(二)、(三)、(四).教材要求通過(guò)學(xué)生在已經(jīng)掌握的任意角的三角函數(shù)的定義和誘導(dǎo)公式(一)的基礎(chǔ)上,利用對(duì)稱思想發(fā)現(xiàn)任意角與、終邊的對(duì)稱關(guān)系,發(fā)現(xiàn)他們與單位圓的交點(diǎn)坐標(biāo)之間關(guān)系,進(jìn)而發(fā)現(xiàn)他們的三角函數(shù)值的關(guān)系,即發(fā)現(xiàn)、掌握、應(yīng)用三角函數(shù)的誘導(dǎo)公式公式(二)、(三)、(四).同時(shí)教材滲透了轉(zhuǎn)化與化歸等數(shù)學(xué)思想方法,為培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣提出了要求.為此本節(jié)內(nèi)容在三角函數(shù)中占有非常重要的地位.
本節(jié)課的授課對(duì)象是本校高一(1)班全體同學(xué),本班學(xué)生水平處于中等偏下,但本班學(xué)生具有善于動(dòng)手的良好學(xué)習(xí)習(xí)慣,所以采用發(fā)現(xiàn)的教學(xué)方法應(yīng)該能輕松的完成本節(jié)課的教學(xué)內(nèi)容.
(1).基礎(chǔ)知識(shí)目標(biāo):理解誘導(dǎo)公式的發(fā)現(xiàn)過(guò)程,掌握正弦、余弦、正切的誘導(dǎo)公式;
(4).個(gè)性品質(zhì)目標(biāo):通過(guò)誘導(dǎo)公式的學(xué)習(xí)和應(yīng)用,感受事物之間的普通聯(lián)系規(guī)律,運(yùn)用化歸等數(shù)學(xué)思想方法,揭示事物的本質(zhì)屬性,培養(yǎng)學(xué)生的唯物史觀.
1.教學(xué)重點(diǎn)
理解并掌握誘導(dǎo)公式.
2.教學(xué)難點(diǎn)
正確運(yùn)用誘導(dǎo)公式,求三角函數(shù)值,化簡(jiǎn)三角函數(shù)式.
高中數(shù)學(xué)優(yōu)秀教案高中數(shù)學(xué)教學(xué)設(shè)計(jì)與教學(xué)反思
“授人以魚(yú)不如授之以魚(yú)”,作為一名老師,我們不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想方法,如何實(shí)現(xiàn)這一目的,要求我們每一位教者苦心鉆研、認(rèn)真探究.下面我從教法、學(xué)法、預(yù)期效果等三個(gè)方面做如下分析.
1.教法
數(shù)學(xué)教學(xué)是數(shù)學(xué)思維活動(dòng)的教學(xué),而不僅僅是數(shù)學(xué)活動(dòng)的結(jié)果,數(shù)學(xué)學(xué)習(xí)的目的不僅僅是為了獲得數(shù)學(xué)知識(shí),更主要作用是為了訓(xùn)練人的思維技能,提高人的思維品質(zhì).
在本節(jié)課的教學(xué)過(guò)程中,本人以學(xué)生為主題,以發(fā)現(xiàn)為主線,盡力滲透類比、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法,采用提出問(wèn)題、啟發(fā)引導(dǎo)、共同探究、綜合應(yīng)用等教學(xué)模式,還給學(xué)生“時(shí)間”、“空間”,由易到難,由特殊到一般,盡力營(yíng)造輕松的學(xué)習(xí)環(huán)境,讓學(xué)生體味學(xué)習(xí)的快樂(lè)和成功的喜悅.
2.學(xué)法
“現(xiàn)代的文盲不是不識(shí)字的人,而是沒(méi)有掌握學(xué)習(xí)方法的人”,很多課堂教學(xué)常常以高起點(diǎn)、大容量、快推進(jìn)的做法,以便教給學(xué)生更多的知識(shí)點(diǎn),卻忽略了學(xué)生接受知識(shí)需要時(shí)間消化,進(jìn)而泯滅了學(xué)生學(xué)習(xí)的興趣與熱情.如何能讓學(xué)生最大程度的消化知識(shí),提高學(xué)習(xí)熱情是教者必須思考的問(wèn)題.
在本節(jié)課的教學(xué)過(guò)程中,本人引導(dǎo)學(xué)生的學(xué)法為思考問(wèn)題、共同探討、解決問(wèn)題簡(jiǎn)單應(yīng)用、重現(xiàn)探索過(guò)程、練習(xí)鞏固。讓學(xué)生參與探索的全部過(guò)程,讓學(xué)生在獲取新知識(shí)及解決問(wèn)題的方法后,合作交流、共同探索,使之由被動(dòng)學(xué)習(xí)轉(zhuǎn)化為主動(dòng)的自主學(xué)習(xí).
3.預(yù)期效果
本節(jié)課預(yù)期讓學(xué)生能正確理解誘導(dǎo)公式的發(fā)現(xiàn)、證明過(guò)程,掌握誘導(dǎo)公式,并能熟練應(yīng)用誘導(dǎo)公式了解一些簡(jiǎn)單的化簡(jiǎn)問(wèn)題.
(一)創(chuàng)設(shè)情景
1.復(fù)習(xí)銳角300,450,600的三角函數(shù)值;
2.復(fù)習(xí)任意角的三角函數(shù)定義;
3.問(wèn)題:由,你能否知道sin2100的值嗎?引如新課.
設(shè)計(jì)意圖
自信的鼓勵(lì)是增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的自信,簡(jiǎn)單易做的題加強(qiáng)了每個(gè)學(xué)生學(xué)習(xí)的熱情,具體數(shù)據(jù)問(wèn)題的出現(xiàn),讓學(xué)生既有好像會(huì)做的心理但又有迷惑的茫然,去發(fā)掘潛力期待尋找機(jī)會(huì)證明我能行,從而思考解決的辦法.
(二)新知探究
1.讓學(xué)生發(fā)現(xiàn)300角的終邊與2100角的終邊之間有什么關(guān)系;
2.讓學(xué)生發(fā)現(xiàn)300角的終邊和2100角的終邊與單位圓的交點(diǎn)的坐標(biāo)有什么關(guān)系;
2100與sin300之間有什么關(guān)系.
設(shè)計(jì)意圖
由特殊問(wèn)題的引入,使學(xué)生容易了解,實(shí)現(xiàn)教學(xué)過(guò)程的平淡過(guò)度,為同學(xué)們探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系做好鋪墊.
(三)問(wèn)題一般化
探究一
1.探究發(fā)現(xiàn)任意角的終邊與的終邊關(guān)于原點(diǎn)對(duì)稱;
2.探究發(fā)現(xiàn)任意角的終邊和角的終邊與單位圓的交點(diǎn)坐標(biāo)關(guān)于原點(diǎn)對(duì)稱;
3.探究發(fā)現(xiàn)任意角與的三角函數(shù)值的關(guān)系.
設(shè)計(jì)意圖
(四)練習(xí)
利用誘導(dǎo)公式(二),口答下列三角函數(shù)值.
(1). ;(2). ;(3). .
喜悅之后讓我們重新啟航,接受新的挑戰(zhàn),引入新的問(wèn)題.
(五)問(wèn)題變形
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十三
1.知識(shí)與技能
(1)掌握斜二測(cè)畫(huà)法畫(huà)水平設(shè)置的平面圖形的直觀圖。
(2)采用對(duì)比的方法了解在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形兩種方法的各自特點(diǎn)。
2.過(guò)程與方法
學(xué)生通過(guò)觀察和類比,利用斜二測(cè)畫(huà)法畫(huà)出空間幾何體的直觀圖。
3.情感態(tài)度與價(jià)值觀
(1)提高空間想象力與直觀感受。
(2)體會(huì)對(duì)比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動(dòng)中的應(yīng)用。
重點(diǎn)、難點(diǎn):用斜二測(cè)畫(huà)法畫(huà)空間幾何值的直觀圖。
1.學(xué)法:學(xué)生通過(guò)作圖感受圖形直觀感,并自然采用斜二測(cè)畫(huà)法畫(huà)空間幾何體的過(guò)程。
2.教學(xué)用具:三角板、圓規(guī)
(一)創(chuàng)設(shè)情景,揭示課題
1.我們都學(xué)過(guò)畫(huà)畫(huà),這節(jié)課我們畫(huà)一物體:圓柱
把實(shí)物圓柱放在講臺(tái)上讓學(xué)生畫(huà)。
2.學(xué)生畫(huà)完后展示自己的結(jié)果并與同學(xué)交流,比較誰(shuí)畫(huà)的效果更好,思考怎樣才能畫(huà)好物體的直觀圖呢?這是我們這節(jié)主要學(xué)習(xí)的內(nèi)容。
(二)研探新知
1.例1,用斜二測(cè)畫(huà)法畫(huà)水平放置的正六邊形的直觀圖,由學(xué)生閱讀理解,并思考斜二測(cè)畫(huà)法的關(guān)鍵步驟,學(xué)生發(fā)表自己的見(jiàn)解,教師及時(shí)給予點(diǎn)評(píng)。
畫(huà)水平放置的多邊形的直觀圖的關(guān)鍵是確定多邊形頂點(diǎn)的位置,因?yàn)槎噙呅雾旤c(diǎn)的位置一旦確定,依次連結(jié)這些頂點(diǎn)就可畫(huà)出多邊形來(lái),因此平面多邊形水平放置時(shí),直觀圖的畫(huà)法可以歸結(jié)為確定點(diǎn)的位置的畫(huà)法。強(qiáng)調(diào)斜二測(cè)畫(huà)法的步驟。
根據(jù)斜二測(cè)畫(huà)法,畫(huà)出水平放置的正五邊形的直觀圖,讓學(xué)生獨(dú)立完成后,教師檢查。
2.例2,用斜二測(cè)畫(huà)法畫(huà)水平放置的圓的直觀圖
教師引導(dǎo)學(xué)生與例1進(jìn)行比較,與畫(huà)水平放置的多邊形的直觀圖一樣,畫(huà)水平放置的圓的直觀圖,也是要先畫(huà)出一些有代表性的點(diǎn),由于不能像多邊那樣直接以頂點(diǎn)為代表點(diǎn),因此需要自己構(gòu)造出一些點(diǎn)。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點(diǎn),與學(xué)生共同完成例2并詳細(xì)板書(shū)畫(huà)法。
3.探求空間幾何體的直觀圖的畫(huà)法
(1)例3,用斜二測(cè)畫(huà)法畫(huà)長(zhǎng)、寬、高分別是4cm、3cm、2cm的長(zhǎng)方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對(duì)每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫(huà)好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請(qǐng)說(shuō)出三視圖表示的幾何體?并用斜二測(cè)畫(huà)法畫(huà)出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握?qǐng)D形尺寸大小之間的關(guān)系。
4.平行投影與中心投影
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫(huà)空間圖形與在中心投影下畫(huà)空間圖形的各自特點(diǎn)。
5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4
三、歸納整理
學(xué)生回顧斜二測(cè)畫(huà)法的關(guān)鍵與步驟
四、作業(yè)
1.書(shū)畫(huà)作業(yè),課本p17練習(xí)第5題
2.課外思考課本p16,探究(1)(2)
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十四
教學(xué)目標(biāo)
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
教學(xué)重難點(diǎn)
利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過(guò)程
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題
(1)求小球擺動(dòng)的周期和頻率;
(1)選用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深與時(shí)間的函數(shù)關(guān)系,并給出整點(diǎn)時(shí)的水深的近似數(shù)值(精確到0.001)。
本題的解答中,給出貨船的進(jìn)、出港時(shí)間,一方面要注意利用周期性以及問(wèn)題的條件,另一方面還要注意考慮實(shí)際意義。關(guān)于課本第64頁(yè)的“思考”問(wèn)題,實(shí)際上,在貨船的安全水深正好與港口水深相等時(shí)停止卸貨將船駛向較深的水域是不行的,因?yàn)檫@樣不能保證船有足夠的時(shí)間發(fā)動(dòng)螺旋槳。
練習(xí):教材p65面3題
三、小結(jié):
1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實(shí)際問(wèn)題抽象為與三角函數(shù)有關(guān)的簡(jiǎn)單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點(diǎn)圖,并根據(jù)散點(diǎn)圖進(jìn)行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十五
教學(xué)目標(biāo):
(1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化
(2)理解直線與二元一次方程的關(guān)系及其證明
教學(xué)用具:計(jì)算機(jī)
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法
教學(xué)過(guò)程:
下面給出教學(xué)實(shí)施過(guò)程設(shè)計(jì)的簡(jiǎn)要思路:
教學(xué)設(shè)計(jì)思路:
(一)引入的設(shè)計(jì)
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問(wèn)題:
問(wèn):說(shuō)出過(guò)點(diǎn)(2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個(gè)問(wèn)題:
問(wèn):求出過(guò)點(diǎn),的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是(或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次。
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個(gè),它們的最高次數(shù)為一次”。
啟發(fā):你在想什么(或你想到了什么)?誰(shuí)來(lái)談?wù)?各小組可以討論討論。
學(xué)生紛紛談出自己的想法,教師邊評(píng)價(jià)邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識(shí)統(tǒng)一到如下問(wèn)題:
【問(wèn)題1】“任意直線的方程都是二元一次方程嗎?”
(二)本節(jié)主體內(nèi)容教學(xué)的設(shè)計(jì)
這是本節(jié)課要解決的第一個(gè)問(wèn)題,如何解決?自己先研究研究,也可以小組研究,確定解決問(wèn)題的思路。
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過(guò)一定時(shí)間的研究,教師組織開(kāi)展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
教師組織評(píng)價(jià),確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線的位置有兩種可能,即斜率存在或不存在。
當(dāng)存在時(shí),直線的截距也一定存在,直線的方程可表示為,它是二元一次方程。
當(dāng)不存在時(shí),直線的方程可表示為形式的方程,它是二元一次方程嗎?
學(xué)生有的認(rèn)為是有的認(rèn)為不是,此時(shí)教師引導(dǎo)學(xué)生,逐步認(rèn)識(shí)到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的關(guān)于、的二元一次方程。
至此,我們的問(wèn)題1就解決了.簡(jiǎn)單點(diǎn)說(shuō)就是:直線方程都是二元一次方程.而且這個(gè)方程一定可以表示成或的形式,準(zhǔn)確地說(shuō)應(yīng)該是“要么形如這樣,要么形如這樣的方程”。
同學(xué)們注意:這樣表達(dá)起來(lái)是不是很啰嗦,能不能有一個(gè)更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式。
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對(duì)于任何一條直線,都有一條表示這條直線的形如(其中、不同時(shí)為0)的二元一次方程。
啟發(fā):任何一條直線都有這種形式的方程.你是否覺(jué)得還有什么與之相關(guān)的問(wèn)題呢?
【問(wèn)題2】任何形如(其中、不同時(shí)為0)的二元一次方程都表示一條直線嗎?
師生共同討論,評(píng)價(jià)不同思路,達(dá)成共識(shí):
(1)當(dāng)時(shí),方程可化為
這是表示斜率為、在軸上的截距為的直線。
(2)當(dāng)時(shí),由于、不同時(shí)為0,必有,方程可化為
這表示一條與軸垂直的直線。
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如(其中不同時(shí)為0)的二元一次方程都表示一條直線。
為方便,我們把(其中不同時(shí)為0)稱作直線方程的一般式是合理。
【動(dòng)畫(huà)演示】
演示“直線各參數(shù)”文件,體會(huì)任何二元一次方程都表示一條直線。
至此,我們的第二個(gè)問(wèn)題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個(gè)問(wèn)題其實(shí)是一個(gè)大問(wèn)題的兩個(gè)方面,這個(gè)大問(wèn)題揭示了直線與二元一次方程的對(duì)應(yīng)關(guān)系,同時(shí),直線方程的一般形式是對(duì)直線特殊形式的抽象和概括,而且抽象的層次越高越簡(jiǎn)潔,我們還體會(huì)到了特殊與一般的轉(zhuǎn)化關(guān)系.
(三)練習(xí)鞏固、總結(jié)提高、板書(shū)和作業(yè)等環(huán)節(jié)的設(shè)計(jì)
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十六
想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
(1)學(xué)生的已有的知識(shí)結(jié)構(gòu):掌握了等差數(shù)列的概念,等差數(shù)列的通項(xiàng)公式和求和公式與方法,等比數(shù)列的概念與通項(xiàng)公式。
(2)教學(xué)對(duì)象:高二理科班的學(xué)生,學(xué)習(xí)興趣比較濃,表現(xiàn)欲較強(qiáng),邏輯思維能力也初步形成,具有一定的分析問(wèn)題和解決問(wèn)題的能力,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因而片面、不夠嚴(yán)謹(jǐn)。
(3)從學(xué)生的認(rèn)知角度來(lái)看:學(xué)生很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過(guò)程中容易出錯(cuò)。
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和本班學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:(1)知識(shí)技能目標(biāo)————理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過(guò)程、公式的特點(diǎn),在此基礎(chǔ)上,并能初步應(yīng)用公式解決與之有關(guān)的問(wèn)題。
(2)過(guò)程與方法目標(biāo)————通過(guò)對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
(3)情感,態(tài)度與價(jià)值觀————培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的精神,從探索中獲得成功的體驗(yàn),感受數(shù)學(xué)的奇異美、結(jié)構(gòu)的對(duì)稱美、形式的簡(jiǎn)潔美。
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用。
教學(xué)難點(diǎn):公式的推導(dǎo)方法及公式應(yīng)用中q與1的關(guān)系。
獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對(duì)學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。因此,本節(jié)課采用了啟發(fā)式和探究式相結(jié)合的教學(xué)方法,讓老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。一句話:還課堂以生命力,還學(xué)生以活力。
(一)創(chuàng)設(shè)情境,提出問(wèn)題。(時(shí)間設(shè)定:3分鐘)
提出問(wèn)題1:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?
高中數(shù)學(xué)課教學(xué)設(shè)計(jì)篇十七
教學(xué)目標(biāo)
1、數(shù)學(xué)知識(shí):掌握等比數(shù)列的概念,通項(xiàng)公式,及其有關(guān)性質(zhì);
2、數(shù)學(xué)能力:通過(guò)等差數(shù)列和等比數(shù)列的類比學(xué)習(xí),培養(yǎng)學(xué)生類比歸納的'能力;
歸納——猜想——證明的數(shù)學(xué)研究方法;
3、數(shù)學(xué)思想:培養(yǎng)學(xué)生分類討論,函數(shù)的數(shù)學(xué)思想。
重點(diǎn):等比數(shù)列的概念及其通項(xiàng)公式,如何通過(guò)類比利用等差數(shù)列學(xué)習(xí)等比數(shù)列;
難點(diǎn):等比數(shù)列的性質(zhì)的探索過(guò)程。
教學(xué)過(guò)程:
1、問(wèn)題引入:
前面我們已經(jīng)研究了一類特殊的數(shù)列——等差數(shù)列。
問(wèn)題1:滿足什么條件的數(shù)列是等差數(shù)列?如何確定一個(gè)等差數(shù)列?
(學(xué)生口述,并投影):如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
要想確定一個(gè)等差數(shù)列,只要知道它的首項(xiàng)a1和公差d。
已知等差數(shù)列的首項(xiàng)a1和d,那么等差數(shù)列的通項(xiàng)公式為:(板書(shū))an=a1+(n-1)d。
師:事實(shí)上,等差數(shù)列的關(guān)鍵是一個(gè)“差”字,即如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。
(第一次類比)類似的,我們提出這樣一個(gè)問(wèn)題。
問(wèn)題2:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的……等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做……數(shù)列。
(這里以填空的形式引導(dǎo)學(xué)生發(fā)揮自己的想法,對(duì)于“和”與“積”的情況,可以利用具體的例子予以說(shuō)明:如果一個(gè)數(shù)列,從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的“和”(或“積”)等于同一個(gè)常數(shù)的話,這個(gè)數(shù)列是一個(gè)各項(xiàng)重復(fù)出現(xiàn)的“周期數(shù)列”,而與等差數(shù)列最相似的是“比”為同一個(gè)常數(shù)的情況。而這個(gè)數(shù)列就是我們今天要研究的等比數(shù)列了。)
2、新課:
1)等比數(shù)列的定義:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做公比。
師生共同簡(jiǎn)要回顧等差數(shù)列的通項(xiàng)公式推導(dǎo)的方法:累加法和迭代法。
公式的推導(dǎo):(師生共同完成)
若設(shè)等比數(shù)列的公比為q和首項(xiàng)為a1,則有:
方法一:(累乘法)
3)等比數(shù)列的性質(zhì):
下面我們一起來(lái)研究一下等比數(shù)列的性質(zhì)
通過(guò)上面的研究,我們發(fā)現(xiàn)等比數(shù)列和等差數(shù)列之間似乎有著相似的地方,這為我們研究等比數(shù)列的性質(zhì)提供了一條思路:我們可以利用等差數(shù)列的性質(zhì),通過(guò)類比得到等比數(shù)列的性質(zhì)。
問(wèn)題4:如果{an}是一個(gè)等差數(shù)列,它有哪些性質(zhì)?
(根據(jù)學(xué)生實(shí)際情況,可引導(dǎo)學(xué)生通過(guò)具體例子,尋找規(guī)律,如:
3、例題鞏固:
例1、一個(gè)等比數(shù)列的第二項(xiàng)是2,第三項(xiàng)與第四項(xiàng)的和是12,求它的第八項(xiàng)的值。
答案:1458或128。
例2、正項(xiàng)等比數(shù)列{an}中,a6·a15+a9·a12=30,則log15a1a2a3 …a20 =_ 10 ____.
(本題為開(kāi)放題,沒(méi)有唯一的答案,如對(duì)于{cn}:2,4,8,16,……,2n,……,則ck=2k=2×2k-1,所以{cn}中的第k項(xiàng)是等差數(shù)列中的第2k-1項(xiàng)。關(guān)鍵是對(duì)通項(xiàng)公式的理解)
1、 小結(jié):
今天我們主要學(xué)習(xí)了有關(guān)等比數(shù)列的概念、通項(xiàng)公式、以及它的性質(zhì),通過(guò)今天的學(xué)習(xí)
我們不僅學(xué)到了關(guān)于等比數(shù)列的有關(guān)知識(shí),更重要的是我們學(xué)會(huì)了由類比——猜想——證明的科學(xué)思維的過(guò)程。
2、作業(yè):
p129:1,2,3
教學(xué)設(shè)計(jì)說(shuō)明:
1、教學(xué)目標(biāo)和重難點(diǎn):首先作為等比數(shù)列的第一節(jié)課,對(duì)于等比數(shù)列的概念、通項(xiàng)公式及其性質(zhì)是學(xué)生接下來(lái)學(xué)習(xí)等比數(shù)列的基礎(chǔ),是必須要落實(shí)的;其次,數(shù)學(xué)教學(xué)除了要傳授知識(shí),更重要的是傳授科學(xué)的研究方法,等比數(shù)列是在等差數(shù)列之后學(xué)習(xí)的因此對(duì)等比數(shù)列的學(xué)習(xí)必然要和等差數(shù)列結(jié)合起來(lái),通過(guò)等比數(shù)列和等差數(shù)列的類比學(xué)習(xí),對(duì)培養(yǎng)學(xué)生類比——猜想——證明的科學(xué)研究方法是有利的。這也就成了本節(jié)課的重點(diǎn)。
2、 教學(xué)設(shè)計(jì)過(guò)程:本節(jié)課主要從以下幾個(gè)方面展開(kāi):
1)通過(guò)復(fù)習(xí)等差數(shù)列的定義,類比得出等比數(shù)列的定義;
2)等比數(shù)列的通項(xiàng)公式的推導(dǎo);
3)等比數(shù)列的性質(zhì);
有意識(shí)的引導(dǎo)學(xué)生復(fù)習(xí)等差數(shù)列的定義及其通項(xiàng)公式的探求思路,一方面使學(xué)生回顧舊
知識(shí),另一方面使學(xué)生通過(guò)聯(lián)想,為類比地探索等比數(shù)列的定義、通項(xiàng)公式奠定基礎(chǔ)。
在類比得到等比數(shù)列的定義之后,再對(duì)幾個(gè)具體的數(shù)列進(jìn)行鑒別,旨在遵循“特殊——一般——特殊”的認(rèn)識(shí)規(guī)律,使學(xué)生體會(huì)觀察、類比、歸納等合情推理方法的應(yīng)用。培養(yǎng)學(xué)生應(yīng)用知識(shí)的能力。
在得到等比數(shù)列的定義之后,探索等比數(shù)列的通項(xiàng)公式又是一個(gè)重點(diǎn)。這里通過(guò)問(wèn)題3的設(shè)計(jì),使學(xué)生產(chǎn)生不得不考慮通項(xiàng)公式的心理傾向,造成學(xué)生認(rèn)知上的沖突,從而使學(xué)生主動(dòng)完成對(duì)知識(shí)的接受。
通過(guò)等差數(shù)列和等比數(shù)列的通項(xiàng)公式的比較使學(xué)生初步體會(huì)到等差和等比的相似性,為下面類比學(xué)習(xí)等比數(shù)列的性質(zhì),做好鋪墊。
等比性質(zhì)的研究是本節(jié)課的高潮,通過(guò)類比
關(guān)于例題設(shè)計(jì):重知識(shí)的應(yīng)用,具有開(kāi)放性,為使學(xué)生更好的掌握本節(jié)課的內(nèi)容。