做任何工作都應(yīng)改有個(gè)計(jì)劃,以明確目的,避免盲目性,使工作循序漸進(jìn),有條不紊。計(jì)劃書寫有哪些要求呢?我們怎樣才能寫好一篇計(jì)劃呢?那么下面我就給大家講一講計(jì)劃書怎么寫才比較好,我們一起來看一看吧。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇一
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動(dòng)相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點(diǎn)。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計(jì)的初步知識,計(jì)算機(jī)的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運(yùn)算能力、空間想象能力,以及綜合運(yùn)用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運(yùn)用歸納、演繹和類比的方法進(jìn)行推理,并正確地、有條理地表達(dá)推理過程的能力。
(3)根據(jù)數(shù)學(xué)的學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實(shí)事求是的科學(xué)態(tài)度,頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考、探索創(chuàng)新的精神。
(4)使學(xué)生具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運(yùn)動(dòng)、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實(shí)際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準(zhǔn)備。
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強(qiáng)與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實(shí)在課堂教學(xué)的各個(gè)環(huán)節(jié),才能不負(fù)眾望。我們要從學(xué)生的認(rèn)識水平和實(shí)際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項(xiàng)突破難點(diǎn).所列基礎(chǔ)知識依據(jù)課程標(biāo)準(zhǔn)設(shè)計(jì),著眼于基礎(chǔ)知識與重點(diǎn)內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進(jìn)一步的學(xué)習(xí)打好堅(jiān)實(shí)的基礎(chǔ),切勿忙于過早的拔高,上難題。同時(shí)應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進(jìn),使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機(jī)結(jié)合。
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進(jìn)行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實(shí)際應(yīng)用能力,從而及時(shí)總結(jié)經(jīng)驗(yàn),找出不足,做好充分的準(zhǔn)備
(5)抓好尖子生與后進(jìn)生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運(yùn)用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運(yùn)用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
周 次
時(shí)
內(nèi) 容
重 點(diǎn)、難 點(diǎn)
第1周
9.2~9.6
集合的含義與表示、
集合間的基本關(guān)系、
會求兩個(gè)簡單集合的并集與交集;會求給定子集的補(bǔ)集;
難點(diǎn):理解概念
第2周
9.7~9.13
集合的基本運(yùn)算
函數(shù)的概念、
函數(shù)的表示法
能使用venn圖表達(dá)集合的關(guān)系及運(yùn)算,會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用
第3周
9.14~9.20
單調(diào)性與最值、
奇偶性、實(shí)習(xí)、小結(jié)
學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21~9.27
指數(shù)與指數(shù)冪的運(yùn)算、
指數(shù)函數(shù)及其性質(zhì)
掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念
第5周
9.28~10.4
(9月月考國慶放假)
第6周
10.5~10.11
對數(shù)與對數(shù)運(yùn)算、
對數(shù)函數(shù)及其性質(zhì)
理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12~10.18
冪函數(shù)
從五個(gè)具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)
第8周
10.19~10.25
方程的根與函數(shù)零點(diǎn),
二分法求方程近似解,
能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
第9周
10.26~11.1
幾類不同增長的模型、函數(shù)模型應(yīng)用舉例
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2~11.8
期中復(fù)習(xí)及考試
分章歸納復(fù)習(xí)+1套模擬測試
第11周
11.9~11.15
任意角和弧度制
任意角的三角函數(shù)
了解任意角的概念和弧度制,能進(jìn)行弧度和度的互化;借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16~11.22
三角函數(shù)的誘導(dǎo)公式
三角函數(shù)的圖像和性質(zhì)
借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23~11.29
函數(shù)y=asin(wx+q)的圖像
借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì),借助計(jì)算機(jī)畫出圖像觀察a w q對函數(shù)圖像變化的影響
第14周
11.30~12.6
三角函數(shù)模型的簡單應(yīng)用 單元考試
會用三角函數(shù)解決一些簡單實(shí)際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7~12.13
平面向量的實(shí)際背景及基本概念,平面向量的線性運(yùn)算
掌握向量加、減法的運(yùn)算,理解其幾何意義掌握數(shù)乘運(yùn)算及兩個(gè)向量共線的含義了解平面向量的基本定理掌握正交分解及坐標(biāo)表示、會用坐標(biāo)表示平面向量的加減及數(shù)乘運(yùn)算
第16周
12.14~12.20
平面向量的基本定理及坐標(biāo)表示,平面向量的數(shù)量積,
理解用坐標(biāo)表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義,體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標(biāo)表達(dá)式,會進(jìn)行平面,向量數(shù)量積的運(yùn)算、求夾角、及垂直關(guān)系
第17周
12.21~12.27
平面向量應(yīng)用舉例,
小結(jié)
用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實(shí)際問題的過程,體會向量是一種幾何問題,物理問題的工具,發(fā)展運(yùn)算能力和解決實(shí)際問題的能力
第18周
12.28~1.3
兩角和與差點(diǎn)正弦、余弦和正切公式
能以兩角差點(diǎn)余弦公式導(dǎo)出兩角和與差點(diǎn)正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
第19周
1.4~1.10
簡單的三角恒等變換
期末復(fù)習(xí)
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇二
使學(xué)生學(xué)好從事社會主義現(xiàn)代化建設(shè)和進(jìn)一步學(xué)習(xí)現(xiàn)代科學(xué)技術(shù)所必需的數(shù)學(xué)基礎(chǔ)知識和基本技能,培養(yǎng)學(xué)生的運(yùn)算能力、邏輯思維能力和空間想象能力,以逐步形成運(yùn)用數(shù)學(xué)知識來分析和解決實(shí)際問題的能力。要培養(yǎng)學(xué)生對數(shù)學(xué)的興趣,激勵(lì)學(xué)生為實(shí)現(xiàn)四個(gè)現(xiàn)代化學(xué)好數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的科學(xué)態(tài)度和辨證唯物主義的觀點(diǎn)。
1、4班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
5班共xx人,男生xx人,女生xx人;本班相對而言,數(shù)學(xué)尖子約xx人,中上等生約xx人,中等生約xx人,中下生約xx人,差生約xx人。
2、4班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
5班在初中升入高中的升學(xué)考試中,數(shù)學(xué)成績在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分為xx,最低分為xx。
3、4/5班分別為高一年級9個(gè)班中編排一個(gè)普高班和一個(gè)普高班之后的體育班,整體分析的結(jié)果是:
1、教材內(nèi)容:集合、一元二次不等式、簡易邏輯、映射與函數(shù)、指數(shù)函數(shù)和對數(shù)函數(shù)、數(shù)列、等差數(shù)列、等比數(shù)列。
2、集合概念及其基本理論,是近代數(shù)學(xué)最基本的內(nèi)容之一;函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一;數(shù)列有著廣泛的應(yīng)用,是進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。
3、教材重點(diǎn):幾種函數(shù)的圖像與性質(zhì)、不等式的解法、數(shù)列的概念、等差數(shù)列與等比數(shù)列的通項(xiàng)公式、前n項(xiàng)和的公式。
4、教材難點(diǎn):關(guān)于集合的各個(gè)基本概念的涵義及其相互之間的區(qū)別和聯(lián)系、映射的概念以及用映射來刻畫函數(shù)概念、反函數(shù)、一些代數(shù)命題的證明、
5、教材關(guān)鍵:理解概念,熟練、牢固掌握函數(shù)的圖像與性質(zhì)。
6、采用了由淺入深、減緩坡度、分散難點(diǎn),逐步展開教材內(nèi)容的做法,符合從有限到無限的認(rèn)識規(guī)律,體現(xiàn)了從量變到質(zhì)變和對立統(tǒng)一的辯證規(guī)律。每階段的內(nèi)容相對獨(dú)立,方法比較單一,有助于掌握每一階段內(nèi)容。
7、各部分知識之間的聯(lián)系較強(qiáng),每一階段的知識都是以前一階段為基礎(chǔ),同時(shí)為下階段的學(xué)習(xí)作準(zhǔn)備。
8、全期教材重要的內(nèi)容是:集合運(yùn)算、不等式解法、函數(shù)的奇偶性與單調(diào)性、等差與等比數(shù)列的通項(xiàng)和前n項(xiàng)和。
1、理解集合、子集、交集、并集、補(bǔ)集的概念。了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,并能熟練求解。
3、了解命題的概念、邏輯聯(lián)結(jié)詞的含義,掌握四種命題及其關(guān)系,掌握充分、必要、充要條件,初步掌握反證法。
4、了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念,掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系。
5、理解函數(shù)的單調(diào)性和奇偶性的概念,并能判斷一些簡單函數(shù)的單調(diào)性和奇偶性,能利用函數(shù)的奇偶性與圖象的對稱性的關(guān)系描繪圖象。
6、掌握指數(shù)函數(shù)、對數(shù)函數(shù)的概念及其圖象和性質(zhì),并會解簡單的函數(shù)應(yīng)用問題。
7、使學(xué)生理解數(shù)列的有關(guān)概念,掌握等差數(shù)列與等比數(shù)列的概念、通項(xiàng)公式、前n項(xiàng)和的公式,并能夠運(yùn)用這些知識解決一些問題。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和進(jìn)步。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用對比的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維能力就解決實(shí)際問題的能力,以及培養(yǎng)提高學(xué)生的自學(xué)能力,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的能力。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不同的教材內(nèi)容選擇不同教法。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇三
1通過對冪函數(shù)概念的學(xué)習(xí)以及對冪函數(shù)圖象和性質(zhì)的歸納與概括,讓學(xué)生體驗(yàn)數(shù)學(xué)概念的形成過程,培養(yǎng)學(xué)生的抽象概括能力。
2使學(xué)生理解并掌握冪函數(shù)的圖象與性質(zhì),并能初步運(yùn)用所學(xué)知識解決有關(guān)問題,培養(yǎng)學(xué)生的靈活思維能力。
3培養(yǎng)學(xué)生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
冪函數(shù)的性質(zhì)及運(yùn)用
冪函數(shù)圖象和性質(zhì)的發(fā)現(xiàn)過程
問題探究法 教具:多媒體
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關(guān)系?
(總結(jié):根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))
問題2:如果正方形的邊長為a,那么正方形的面積 ,這里s是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里v是a的函數(shù)。 問題4:如果正方形場地面積為s,那么正方形的邊長 ,這里a是s的函數(shù) 問題5:如果某人 s內(nèi)騎車行進(jìn)了 km,那么他騎車的速度 ,這里v是t的函數(shù)。
以上是我們生活中經(jīng)常遇到的幾個(gè)數(shù)學(xué)模型,你能發(fā)現(xiàn)以上幾個(gè)函數(shù)解析式有什么共同點(diǎn)嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個(gè)具體代表,如果讓你給他們起一個(gè)名字的話,你將會給他們起個(gè)什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當(dāng)引導(dǎo):從自變量所處的位置這個(gè)角度)(引入新課,書寫課題)
由學(xué)生討論,(教師可提示p=w可看成p=w1)總結(jié),即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。
教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。
冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學(xué)生回顧指數(shù)函數(shù)的概念) 結(jié)論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學(xué)中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個(gè)冪函數(shù)?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學(xué)生獨(dú)立思考、回答)
2冪函數(shù)具有哪些性質(zhì)?研究函數(shù)應(yīng)該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?
(學(xué)生討論,教師引導(dǎo)。學(xué)生回答。)
3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?
(學(xué)生小組討論,得到結(jié)論。引導(dǎo)學(xué)生舉例研究。結(jié)論:冪指數(shù) 不同,定義域并不完全相同,應(yīng)區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當(dāng)n=0時(shí),其表達(dá)式y(tǒng)=x0=1;定義域?yàn)?-∞,0)u(0,+∞),特別強(qiáng)調(diào),當(dāng)x為任何非零實(shí)數(shù)時(shí),函數(shù)的值均為1,圖象是從點(diǎn)(0,1)出發(fā),平行于x軸的兩條射線,但點(diǎn)(0,1)要除外。)
例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導(dǎo)學(xué)生具體問題具體分析,并作簡單歸納:分?jǐn)?shù)指數(shù)應(yīng)化成根式,負(fù)指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應(yīng)具體分析。)
4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調(diào)性如何?如何判斷?
(學(xué)生思考,引導(dǎo)作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標(biāo)系中學(xué)生作圖,教師巡視。將學(xué)生作圖用實(shí)物投影儀演示,指出優(yōu)點(diǎn)和錯(cuò)誤之處。教師利用幾何畫板演示。見后附圖1
讓學(xué)生觀察圖象,看單調(diào)性、以及還有哪些共同點(diǎn)?(學(xué)生思考,回答。教師注意學(xué)生敘述的嚴(yán)密性。)
教師總評:冪函數(shù)的性質(zhì)
(1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(diǎn)(1,1),
(2)如果a>0,則冪函數(shù)的圖象通過原點(diǎn),并在區(qū)間[0,+∞)上是增函數(shù),
(3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當(dāng)x從右邊趨向于原點(diǎn)時(shí),圖象在y軸右方無限地趨近y軸;當(dāng)x趨向于+∞,圖象在x軸上方無限地趨近x軸。
5通過觀察例1,在冪函數(shù)y=xa中,當(dāng)a是(1)正偶數(shù)、(2)正奇數(shù)時(shí),這一類函數(shù)有哪種性質(zhì)?
學(xué)生思考,教師講評:(1)在冪函數(shù)y=xa中,當(dāng)a是正偶數(shù)時(shí),函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當(dāng)a是正奇數(shù)時(shí),函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。
例3鞏固練習(xí) 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調(diào)性:①y=x ②y=x ③y=x 。
例4簡單應(yīng)用1:比較下列各組中兩個(gè)值的大小,并說明理由:
①0.75 ,0.76 ;
②(-0.95) ,(-0.96) ;
③0.23 ,0.24 ;
④0.31 ,0.31
例5簡單應(yīng)用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。
例6簡單應(yīng)用2:
已知(a+1)<(3-2a) ,試求a的取值范圍。
今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達(dá)式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質(zhì)。
布置作業(yè):
課本p.73 2、3、4、思考5
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇四
1.通過高速公路上的實(shí)際例子,引起積極的思考和交流,從而認(rèn)識到生活中處處可以遇到變量間的依賴關(guān)系.能夠利用初中對函數(shù)的認(rèn)識,了解依賴關(guān)系中有的是函數(shù)關(guān)系,有的則不是函數(shù)關(guān)系.
2.培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度.
在于讓學(xué)生領(lǐng)悟生活中處處有變量,變量之間充滿了關(guān)系
教學(xué)難點(diǎn):培養(yǎng)廣泛聯(lián)想的能力和熱愛數(shù)學(xué)的態(tài)度
探究交流法
(一)、知識探索:
閱讀課文p25頁。實(shí)例:書上在高速公路情境下的問題。
在高速公路情景下,你能發(fā)現(xiàn)哪些函數(shù)關(guān)系?
2.對問題3,儲油量v對油面高度h、油面寬度w都存在依賴關(guān)系,兩種依賴關(guān)系都有函數(shù)關(guān)系嗎?
問題小結(jié):
1.生活中變量及變量之間的依賴關(guān)系隨處可見,并非有依賴關(guān)系的兩個(gè)變量都有函數(shù)關(guān)系,只有滿足對于一個(gè)變量的每一個(gè)值,另一個(gè)變量都有確定的值與之對應(yīng),才稱它們之間有函數(shù)關(guān)系。
2.構(gòu)成函數(shù)關(guān)系的兩個(gè)變量,必須是對于自變量的每一個(gè)值,因變量都有確定的y值與之對應(yīng)。
3.確定變量的依賴關(guān)系,需分清誰是自變量,誰是因變量,如果一個(gè)變量隨著另一個(gè)變量的變化而變化,那么這個(gè)變量是因變量,另一個(gè)變量是自變量。
(二)、新課探究——函數(shù)概念
1.初中關(guān)于函數(shù)的定義:
2.從集合的觀點(diǎn)出發(fā),函數(shù)定義:
給定兩個(gè)非空數(shù)集a和b,如果按照某個(gè)對應(yīng)關(guān)系f,對于a中的任何一個(gè)數(shù)x,在集合b中都存在確定的數(shù)f(x)與之對應(yīng),那么就把這種對應(yīng)關(guān)系f叫做定義在a上的函數(shù),記作或f:a→b,或y=f(x),x∈a.;
此時(shí)x叫做自變量,集合a叫做函數(shù)的定義域,集合{f(x)︱x∈a}叫作函數(shù)的值域。習(xí)慣上我們稱y是x的函數(shù)。
定義域,值域,對應(yīng)法則
4.函數(shù)值
當(dāng)x=a時(shí),我們用f(a)表示函數(shù)y=f(x)的函數(shù)值。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇五
在學(xué)校教學(xué)工作意見指導(dǎo)下,認(rèn)真落實(shí)學(xué)校對備課組工作的各項(xiàng)要求,嚴(yán)格執(zhí)行學(xué)校的各項(xiàng)教育教學(xué)制度和要求,強(qiáng)化數(shù)學(xué)教學(xué)研究,提高全組老師的教學(xué)、教研水平,明確任務(wù),團(tuán)結(jié)協(xié)作,圓滿完成教學(xué)教研任務(wù)。
本學(xué)期仍然使用人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(a版)》教材,在堅(jiān)持我校數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,在學(xué)生九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高學(xué)生所必要的數(shù)學(xué)素養(yǎng),以滿足學(xué)生的發(fā)展與社會進(jìn)步的需要,認(rèn)真處理繼承、借鑒、發(fā)展、創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性、時(shí)代性、典型性和可接受性等,具有親和力、問題性、科學(xué)性、思想性、應(yīng)用性、聯(lián)系性等特點(diǎn)。
本學(xué)期授課內(nèi)容:必修一、必修二
學(xué)生基本情況:本屆學(xué)生普遍基礎(chǔ)較差,學(xué)習(xí)自覺性差,自我控制能力弱,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。其次,學(xué)生的計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,因此在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算能力,同時(shí)要進(jìn)一步提高其思維能力。同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些內(nèi)容。因此時(shí)間上可能仍然吃緊。同時(shí),因?yàn)閷W(xué)生底子薄弱,因此在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
教學(xué)目標(biāo):認(rèn)真貫徹高中數(shù)學(xué)新課標(biāo)精神,樹立新的教學(xué)理念,以“雙基”教學(xué)為主要內(nèi)容,堅(jiān)持“抓兩頭、帶中間、整體推進(jìn)”,使每個(gè)學(xué)生的數(shù)學(xué)能力都得到提高和發(fā)展。高一學(xué)生共有20個(gè)班,分兩個(gè)教學(xué)層次,每層個(gè)10個(gè)班。實(shí)驗(yàn)班的學(xué)生可根據(jù)實(shí)際情況提高教學(xué)目標(biāo)。平行班學(xué)生的主要任務(wù)有兩點(diǎn),第一點(diǎn):保證重點(diǎn)學(xué)生的數(shù)學(xué)成績穩(wěn)步上升,成為學(xué)生的優(yōu)勢科目;第二點(diǎn):加強(qiáng)數(shù)學(xué)學(xué)習(xí)比較困難學(xué)生的輔導(dǎo)培養(yǎng),增加其信息并逐步縮小數(shù)學(xué)成績差距。
1、選取與內(nèi)容密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的課堂素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以達(dá)到培養(yǎng)其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改進(jìn)學(xué)生的學(xué)習(xí)方式。 3、在教學(xué)中引導(dǎo)學(xué)生通過類比,推廣,特殊化,化歸等方法,盡可能培養(yǎng)學(xué)生邏輯思維的習(xí)慣。
1、認(rèn)真落實(shí),搞好集體備課。每周進(jìn)行一次集體備課。各位老師根據(jù)自已承擔(dān)的任務(wù),提前一周進(jìn)行單元式的備課,并出好本周的練習(xí)活頁。教研會時(shí),由一名老師作主要發(fā)言人,對本周的教材內(nèi)容作分析,然后大家研究討論其中的重點(diǎn)、難點(diǎn)、教學(xué)方法等。
2、詳細(xì)計(jì)劃,保證練習(xí)質(zhì)量。教學(xué)中用配備資料《導(dǎo)學(xué)案》,要求學(xué)生按教學(xué)進(jìn)度完成相應(yīng)的習(xí)題,教師要提前向?qū)W生指出不做的題,以免影響學(xué)生的時(shí)間,每周以內(nèi)容“滾動(dòng)式”編一份練習(xí)試卷,學(xué)生完成后老師要收齊批改,對存在的普遍性問題要安排時(shí)間講評。
3、抓好第二課堂,穩(wěn)定數(shù)學(xué)優(yōu)生,培養(yǎng)數(shù)學(xué)能力興趣。尖尖班的教學(xué)進(jìn)度可適當(dāng)調(diào)整,教學(xué)難度要有所提升;其他各班要培育好本班的優(yōu)生,注意激發(fā)學(xué)生的學(xué)習(xí)興趣,隨時(shí)注意學(xué)生學(xué)習(xí)方法的指導(dǎo)。備課組也將組織學(xué)生上培優(yōu)班。
4、加強(qiáng)輔導(dǎo)工作。對已經(jīng)出現(xiàn)數(shù)學(xué)學(xué)習(xí)困難的學(xué)生,教師的下班輔導(dǎo)十分重要。教師教學(xué)中,要盡快掌握班上學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,有針對性地進(jìn)行輔導(dǎo)工作,既要注意照顧好班上優(yōu)生層,更不能忽視班上的困難學(xué)生。
附:教學(xué)進(jìn)度計(jì)劃
第一周集合
第二周函數(shù)及其表示
第三周函數(shù)的基本性質(zhì)
第四周指數(shù)函數(shù)
第五周對數(shù)函數(shù)
第六周冪函數(shù)
第七周函數(shù)與方程
第八周函數(shù)的應(yīng)用
第九周期中考試
第十至十一周空間幾何體
第十二周點(diǎn),直線,面之間的位置關(guān)系
第十三至十四周直線與平面平行與垂直的判定與性質(zhì)
第十五至十六周直線與方程
第十七至十八周周圓與方程
第十九至二十周期末考試
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇六
本學(xué)期擔(dān)任高一(9)(10)兩班的數(shù)學(xué)教學(xué)工作,兩班學(xué)生共有120人,初中的基礎(chǔ)參差不齊,但兩個(gè)班的學(xué)生整體水平不高;部分學(xué)生學(xué)習(xí)習(xí)慣不好,很多學(xué)生不能正確評價(jià)自己,這給教學(xué)工作帶來了一定的難度,為把本學(xué)期教學(xué)工作做好,制定如下教學(xué)工作計(jì)劃。
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會進(jìn)步的需要。具體目標(biāo)如下。
1.獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。通過不同形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本能力。
3.提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的能力,數(shù)學(xué)表達(dá)和交流的能力,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的能力。
4.發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出判斷。
5.提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,形成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6.具有一定的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
(一)情意目標(biāo)
(1)通過分析問題的方法的教學(xué),培養(yǎng)學(xué)生的學(xué)習(xí)的興趣。
(2)提供生活背景,通過數(shù)學(xué)建模,讓學(xué)生體會數(shù)學(xué)就在身邊,培養(yǎng)學(xué)數(shù)學(xué)用數(shù)學(xué)的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質(zhì),體驗(yàn)獲得數(shù)學(xué)規(guī)律的艱辛和樂趣,在分組研究合作學(xué)習(xí)中學(xué)會交流、相互評價(jià),提高學(xué)生的合作意識
(4)基于情意目標(biāo),調(diào)控教學(xué)流程,堅(jiān)定學(xué)習(xí)信念和學(xué)習(xí)信心。
(5)還時(shí)空給學(xué)生、還課堂給學(xué)生、還探索和發(fā)現(xiàn)權(quán)給學(xué)生,給予學(xué)生自主探索與合作交流的機(jī)會,在發(fā)展他們思維能力的同時(shí),發(fā)展他們的數(shù)學(xué)情感、學(xué)好數(shù)學(xué)的自信心和追求數(shù)學(xué)的科學(xué)精神。
(6)讓學(xué)生體驗(yàn)“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學(xué)發(fā)現(xiàn)歷程法。
(二)能力要求培養(yǎng)學(xué)生記憶能力。
(1)通過定義、命題的總體結(jié)構(gòu)教學(xué),揭示其本質(zhì)特點(diǎn)和相互關(guān)系,培養(yǎng)對數(shù)學(xué)本質(zhì)問題的背景事實(shí)及具體數(shù)據(jù)的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關(guān)概念、公式和圖形的對應(yīng)關(guān)系,培養(yǎng)記憶能力。
2、培養(yǎng)學(xué)生的運(yùn)算能力。
(1)通過概率的訓(xùn)練,培養(yǎng)學(xué)生的運(yùn)算能力。
(2)加強(qiáng)對概念、公式、法則的明確性和靈活性的教學(xué),培養(yǎng)學(xué)生的運(yùn)算能力。
(3)通過函數(shù)、數(shù)列的教學(xué),提高學(xué)生是運(yùn)算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運(yùn)算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結(jié)合,另辟蹊徑,提高學(xué)生運(yùn)算能力。
我校高一學(xué)生在數(shù)學(xué)學(xué)習(xí)上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進(jìn)一步學(xué)習(xí)條件不具備.高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進(jìn)一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實(shí)根分布與參變量方程,三角公式的變形與靈活運(yùn)用,空間概念的形成,排列組合應(yīng)用題及實(shí)際應(yīng)用問題等.客觀上這些觀點(diǎn)就是分化點(diǎn),有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補(bǔ)救措施,查缺補(bǔ)漏,分化是不可避免的。
2、被動(dòng)學(xué)習(xí).許多同學(xué)進(jìn)入高中后,還像初中那樣,有很強(qiáng)的依賴心理,跟隨老師慣性運(yùn)轉(zhuǎn),沒有掌握學(xué)習(xí)主動(dòng)權(quán).表現(xiàn)在不定計(jì)劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。不知道或不明確學(xué)習(xí)數(shù)學(xué)應(yīng)具有哪些學(xué)習(xí)方法和學(xué)習(xí)策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點(diǎn)難點(diǎn),突出思想方法.而一部分同學(xué)上課沒能專心聽課,對要點(diǎn)沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時(shí)鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機(jī)械模仿,死記硬背.也有的晚上加班加點(diǎn),白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇七
1.知識與技能目標(biāo)
(1). 掌握集合的兩種表示方法;能夠按照指定的方法表示一些集合.
(2).發(fā)展學(xué)生運(yùn)用數(shù)學(xué)語言的能力;培養(yǎng)學(xué)生分析、比較、歸納的邏輯思維能力.
2.過程與方法目標(biāo)
①通過實(shí)例抽象概括集合的共同特征,從而引出集合的概念是本節(jié)課的重要任務(wù)之一。因此教學(xué)時(shí)不僅要關(guān)注集合的基本知識的學(xué)習(xí),同時(shí)還要關(guān)注學(xué)生抽象概括能力的培養(yǎng)。
②教學(xué)過程中應(yīng)努力創(chuàng)造培養(yǎng)學(xué)生的思維能力,提高學(xué)生理解掌握概念的能力,訓(xùn)練學(xué)生分析問題和處理問題的能力
情感態(tài)度與價(jià)值觀目標(biāo) 感受集合語言的意義和作用,培養(yǎng)合作交流、勤于思考、積極探討的精神,發(fā)展用嚴(yán)密謹(jǐn)慎的集合語言描述問題的習(xí)慣;學(xué)習(xí)從數(shù)學(xué)的角度認(rèn)識世界;通過合作學(xué)習(xí)增強(qiáng)合作意識;培養(yǎng)數(shù)學(xué)的特有文化——簡潔精煉,體會從感性到理性的思維過程。
2、教材分析 本節(jié)課位于我校現(xiàn)行教材≤中等職業(yè)教育國家規(guī)劃教材≥數(shù)學(xué)第一章第一節(jié)≤集合≥的第二課時(shí),這節(jié)課主要學(xué)習(xí)集合的表示方法。
集合語言是現(xiàn)代數(shù)學(xué)的基本語言。通過集合語言的學(xué)習(xí),有利于學(xué)生簡明準(zhǔn)確地表達(dá)學(xué)習(xí)的數(shù)學(xué)內(nèi)容。集合的初步知識是學(xué)生學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ),是中職數(shù)學(xué)學(xué)習(xí)的出發(fā)點(diǎn)。
在中職數(shù)學(xué)中,這部分知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ)。例如,在后續(xù)學(xué)習(xí)的集合的相關(guān)內(nèi)容和第二章≤不等式≥、
第三章≤函數(shù)≥,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集,都離不開集合。也是研究數(shù)學(xué)問題不可缺少的工具。這一課在本章的學(xué)習(xí)有很重要的意義,也是本章后續(xù)學(xué)習(xí)和后續(xù)學(xué)習(xí)的基礎(chǔ),起到承上啟下的作用。
3、學(xué)情分析
學(xué)生在初中階段的學(xué)習(xí)中,雖然已經(jīng)有了對集合的初步認(rèn)知,由于中職學(xué)生的現(xiàn)狀,學(xué)生基礎(chǔ)比較弱,學(xué)習(xí)習(xí)慣比較差,根據(jù)我校的現(xiàn)行教材結(jié)合學(xué)生的實(shí)際情況,為了培養(yǎng)學(xué)
生良好的學(xué)習(xí)習(xí)慣,打好基礎(chǔ),對集合的兩種表示方法:列舉法和描述法通過講練結(jié)合、不斷地鞏固練習(xí)、提高練習(xí)來達(dá)到標(biāo)準(zhǔn)要求,鼓勵(lì)學(xué)生理解的基礎(chǔ)上記憶的學(xué)習(xí)方法來學(xué)習(xí)。
本節(jié)課采用新知識講授課的教學(xué)模式,教學(xué)策略為先熟悉再深入,采用啟發(fā)式、講練結(jié)合等教學(xué)方法,并采用多媒體教學(xué)手段輔助教學(xué)。
3、教學(xué)重難點(diǎn)
重點(diǎn):列舉法、描述法。
難點(diǎn):運(yùn)用集合的三種常用表示方法正確表示一些簡單的集合
4、教學(xué)方法:實(shí)例歸納、學(xué)生的自主探究、主動(dòng)參與與教師的引導(dǎo)相結(jié)合,充分體現(xiàn)學(xué)生在課堂中的主體作用和教師的主導(dǎo)作用。
5、教學(xué)手段:多媒體輔助教學(xué)——主要是利用多媒體展示圖片來增加學(xué)生的學(xué)習(xí)興趣和對集合知識的直觀理解。
6、教學(xué)思路:
7、教學(xué)過程
7.1創(chuàng)設(shè)情境,引入課題
【活動(dòng)】多媒體展示:1、草原一群大象在緩步走來。
2、藍(lán)藍(lán)的天空中,一群鳥在飛翔
3、一群學(xué)生在一起玩。
引導(dǎo)學(xué)生舉出一些類似的例子問題
在這里,集合是我們常用的一個(gè)詞語,我們感興趣的是問題中某些特定(是一群大象、一群鳥、一群學(xué)生)對象的總體,而不是個(gè)別的對象,為此,我們將學(xué)習(xí)一個(gè)新的概念——集合,即是一些研究對象的總體。
【設(shè)計(jì)意圖】通過多媒體展示,極大地調(diào)動(dòng)起了學(xué)生的積極性,吸引學(xué)生的注意力,設(shè)置輕松的學(xué)習(xí)氣氛。
7.2步步探索,形成概念
【活動(dòng)1】觀察下列對象:
①1~20以內(nèi)的所有質(zhì)數(shù);
②我國從1991—20xx年的13年內(nèi)所發(fā)射的所有人造衛(wèi)星
③金星汽車廠20xx年生產(chǎn)的所有汽車;
④20xx年1月1日之前與我國建立外交關(guān)系的所有國家;
⑤所有的正方形;
⑥到直線l的距離等于定長d的所有的點(diǎn);
⑦方程x2+3x—2=0的所有實(shí)數(shù)根;
⑧新華中學(xué)20xx年9月入學(xué)的所有的高一學(xué)生。
師生共同概括8個(gè)例子的特征,得出結(jié)論,給出集合的含義:把研究對象統(tǒng)稱為元素,常用小寫字母啊a,b,c….表示,把一些元素組成的總體叫做集合,常用大寫字母a,b,c….來表示。
【設(shè)計(jì)意圖】使學(xué)生自己明確集合的含義,培養(yǎng)學(xué)生的概括能力。
【活動(dòng)2】要求每個(gè)學(xué)生舉出一些集合的例子,選出具有代表性的幾個(gè)問題,比
如:
1)a={1,3},3、5哪個(gè)是a的元素?
2)b={身材較高的人},能否表示成集合?
3)c={1,1,3}表示是否準(zhǔn)確?
4)d={中國的直轄市},e={北京,上海,天津,重慶}是否表示同一集合?
5)f={a,b,c}與g={c,b,a}這兩個(gè)集合是否一樣?
【分析】1)1,3是a的元素,5不是
2)我們不能準(zhǔn)確的規(guī)定多少高算是身材較高,即不能確定集合的元素,
所以b不能表示集合
3)c中有二個(gè)1,因此表達(dá)不準(zhǔn)確
4)我們知道e中各元素都是屬于中國的直轄市,但中國的直轄市并不 只有這幾個(gè),因此不相等。
5)f和g的元素相同,只不過順序不同,但還是表示同一個(gè)集合
通過上述分析引導(dǎo)學(xué)生自由討論、探究概括出集合中各種元素的特點(diǎn),并讓學(xué)生再舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,要求說明理由。師生一起得出集合的特征:
1)確定性:某一個(gè)具體對象,它或者是一個(gè)給定的集合的元素,或者不是該集合的元素,兩種情況必有一種且只有一種成立.
2)互異性:同一集合中不應(yīng)重復(fù)出現(xiàn)同一元素.
3)無序性:集合中的元素沒有順序
4)集合相等:構(gòu)成兩個(gè)集合的元素完全一樣
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生自主探究得出集合的特征:確定性、互異性、無序性,集合相等,培養(yǎng)學(xué)生的抽象概括能力,同時(shí)使學(xué)生能更好的了解集合。
7.3集合與元素的關(guān)系
【問題】高一(4)班里所有學(xué)生組成集合a,a是高一(4)班里的同學(xué),b是
高一(5)班的同學(xué),a、b與a分別有什么關(guān)系?
引導(dǎo)學(xué)生閱讀教科書中的相關(guān)內(nèi)容,思考上述問題,發(fā)表學(xué)生自己的看法。 得出結(jié)論:①如果a是集合a的元素,就說a屬于集合a,記作a∈a。
②如果b不是集合a的元素,就說b不屬于集合a,記作b?a。
再讓學(xué)生舉一些例子說明這種關(guān)系。
【設(shè)計(jì)意圖】使學(xué)生發(fā)揮想象,明確元素與集合的關(guān)系。
【活動(dòng)】熟記數(shù)學(xué)中一些常用的數(shù)集及其記法
引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,閱讀教科書第3頁表格中的內(nèi)容,認(rèn)識常用數(shù)集記號。
【設(shè)計(jì)意圖】使學(xué)生熟記常用數(shù)集的記號,以免日后做題時(shí)混淆。
7.4集合的表示方法
【問題】由以上內(nèi)容我們可以知道用自然語言可以描述一個(gè)集合,那么有沒有其他方式表示集合呢?
7.4.1集合的列舉法表示
【活動(dòng)】嘗試用列舉法第4頁例1中的集合:
1)小于10的所有自然數(shù)組成的集合;
2)方程x2?x的所有實(shí)數(shù)根組成的集合;
3)由1到20以內(nèi)的所有素?cái)?shù)組成的集合;
并思考列舉法的特點(diǎn)。
引導(dǎo)學(xué)生閱讀教科書,自主學(xué)習(xí)列舉法,得出答案:
1)a={0,1,2,3,4,5,6,7,8,9}
2)a={0,1}
3)a={2,3,5,7,11,13,17,19}
通過上述講解請同學(xué)說說列舉法的特點(diǎn):
1)用花括號{}把元素括起來
2)集合的元素可以具體一一列出
【設(shè)計(jì)意圖】使學(xué)生學(xué)習(xí)基本了解用列舉法表示集合的方法,并了解列舉法的特點(diǎn)。
7.4.2集合的描述法表示
【活動(dòng)1】提出教科書中的思考題:
1)你能用自然語言描述集合{2,4,6,8}嗎?
2)你能用列舉法表示不等式x—7<3的解集嗎?
學(xué)生討論,師生總結(jié):
1)從2開始到8的所有偶數(shù)組成的集合
2)這個(gè)集合中的元素不能一一列出,因此不可以用列舉法表示
引導(dǎo)學(xué)生思考、討論用列舉法表示相應(yīng)集合的困難,激發(fā)學(xué)生學(xué)習(xí)描述法的積極性。
引導(dǎo)學(xué)生閱讀教科書中描述法的相關(guān)內(nèi)容,讓學(xué)生討論交流,歸納描述法的特點(diǎn)。
例如2)可以用描述法表示為:a={x?r|x<10}
【設(shè)計(jì)意圖】使學(xué)生體會用描述法表示集合的必要性,會用描述法表示集合。
【活動(dòng)2】引導(dǎo)學(xué)生完成第5頁例2
1) 方程x2?2?0的所有實(shí)數(shù)根組成的集合
2) 由大于10小于20的所有整數(shù)組成的集合
討論應(yīng)當(dāng)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?。學(xué)生回答,老師進(jìn)行總結(jié):
1)描述法:a={ x?r|x2?2?0}
列舉法:
2)描述法:a={ x?z|10
列舉法:a={11,12,13,14,15,16,17,18,19}
【設(shè)計(jì)意圖】使學(xué)生掌握好兩種表示法各自的特點(diǎn),根據(jù)題目靈活選擇。
7.5課堂小結(jié),學(xué)習(xí)反思
【問題】1)集合與元素的含義?
2)集合的特點(diǎn)?
3)集合的不同表示方法
引導(dǎo)學(xué)生整理概括這一節(jié)課所學(xué)的知識
【設(shè)計(jì)意圖】歸納整理知識,形成知識網(wǎng)絡(luò),并培養(yǎng)學(xué)生自主對所學(xué)知識進(jìn)行總結(jié)的能力。
8、作業(yè)布置,鞏固新知
課后作業(yè):習(xí)題1.1a組第4題
課后思考作業(yè): ①結(jié)合實(shí)例,試比較用自然語言、列舉法和描述法表示集合時(shí)各自的特點(diǎn)和適用的對象。
②自己舉出幾個(gè)集合的例子,并分別用自然語言、列舉法和描述法表示出來。
9、板書設(shè)計(jì)
1.1.1集合的含義與表示
1、元素的含義:把研究對象統(tǒng)稱為元素
2、集合的含義:一些元素組成的總體。
3、集合元素的三個(gè)特性:確定性,互異性,無序性,集合相等
4、元素與集合的關(guān)系:a?a,a?a
5、常用數(shù)集與記法
6、列舉法
7、描述法
8、課堂小結(jié)
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇八
使學(xué)生在九年義務(wù)教育數(shù)學(xué)課程的基礎(chǔ)上,進(jìn)一步提高作為未來公民所必要的數(shù)學(xué)素養(yǎng),以滿足個(gè)人發(fā)展與社會提高的需要。具體目標(biāo)如下。
1、獲得必要的數(shù)學(xué)基礎(chǔ)知識和基本技能,理解基本的數(shù)學(xué)概念、數(shù)學(xué)結(jié)論的本質(zhì),了解概念、結(jié)論等產(chǎn)生的背景、應(yīng)用,體會其中所蘊(yùn)涵的數(shù)學(xué)思想和方法,以及它們在后續(xù)學(xué)習(xí)中的作用。經(jīng)過不一樣形式的自主學(xué)習(xí)、探究活動(dòng),體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程。
2、提高空間想像、抽象概括、推理論證、運(yùn)算求解、數(shù)據(jù)處理等基本本事。
3、提高數(shù)學(xué)地提出、分析和解決問題(包括簡單的實(shí)際問題)的本事,數(shù)學(xué)表達(dá)和交流的本事,發(fā)展獨(dú)立獲取數(shù)學(xué)知識的本事。
4、發(fā)展數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,力求對現(xiàn)實(shí)世界中蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考和作出確定。
5、提高學(xué)習(xí)數(shù)學(xué)的興趣,樹立學(xué)好數(shù)學(xué)的信心,構(gòu)成鍥而不舍的鉆研精神和科學(xué)態(tài)度。
6、具有必須的數(shù)學(xué)視野,逐步認(rèn)識數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,構(gòu)成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,從而進(jìn)一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(a版)》,它在堅(jiān)持我國數(shù)學(xué)教育優(yōu)良傳統(tǒng)的前提下,認(rèn)真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關(guān)系,體現(xiàn)基礎(chǔ)性,時(shí)代性,典型性和可理解性等到,具有如下特點(diǎn):
1、“親和力”:以生動(dòng)活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學(xué)習(xí)活力。
2、“問題性”:以恰時(shí)恰點(diǎn)的問題引導(dǎo)數(shù)學(xué)活動(dòng),培養(yǎng)問題意識,孕育創(chuàng)新精神。
3、“科學(xué)性”與“思想性”:經(jīng)過不一樣數(shù)學(xué)資料的聯(lián)系與啟發(fā),強(qiáng)調(diào)類比,推廣,特殊化,化歸等思想方法的運(yùn)用,學(xué)習(xí)數(shù)學(xué)地思考問題的方式,提高數(shù)學(xué)思維本事,培育理性精神。
4、“時(shí)代性”與“應(yīng)用性”:以具有時(shí)代性和現(xiàn)實(shí)感的素材創(chuàng)設(shè)情境,加強(qiáng)數(shù)學(xué)活動(dòng),發(fā)展應(yīng)用意識。
1、選取與資料密切相關(guān)的,典型的,豐富的和學(xué)生熟悉的素材,用生動(dòng)活潑的語言,創(chuàng)設(shè)能夠體現(xiàn)數(shù)學(xué)的概念和結(jié)論,數(shù)學(xué)的思想和方法,以及數(shù)學(xué)應(yīng)用的學(xué)習(xí)情境,使學(xué)生產(chǎn)生對數(shù)學(xué)的親切感,引發(fā)學(xué)生“看個(gè)究竟”的沖動(dòng),以到達(dá)培養(yǎng)其興趣的目的。
2、經(jīng)過“觀察”,“思考”,“探究”等欄目,引發(fā)學(xué)生的思考和探索活動(dòng),切實(shí)改善學(xué)生的學(xué)習(xí)方式。
3、在教學(xué)中強(qiáng)調(diào)類比,推廣,特殊化,化歸等數(shù)學(xué)思想方法,盡可能養(yǎng)成其邏輯思維的習(xí)慣。
兩個(gè)班均屬普高班,學(xué)習(xí)情景良好,但學(xué)生自覺性差,自我控制本事弱,所以在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。班級存在的最大問題是計(jì)算本事太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,所以在以后的教學(xué)中,重點(diǎn)在于培養(yǎng)學(xué)生的計(jì)算本事,同時(shí)要進(jìn)一步提高其思維本事。
同時(shí),由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時(shí)適機(jī)補(bǔ)充一些資料。所以時(shí)間上可能仍然吃緊。同時(shí),其底子薄弱,所以在教學(xué)時(shí)只能注重基礎(chǔ)再基礎(chǔ),爭取每一堂課落實(shí)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
1、激發(fā)學(xué)生的學(xué)習(xí)興趣。由數(shù)學(xué)活動(dòng)、故事、吸引人的課、合理的要求、師生談話等途徑樹立學(xué)生的學(xué)習(xí)信心,提高學(xué)習(xí)興趣,在主觀作用下上升和提高。
2、注意從實(shí)例出發(fā),從感性提高到理性;注意運(yùn)用比較的方法,反復(fù)比較相近的概念;注意結(jié)合直觀圖形,說明抽象的知識;注意從已有的知識出發(fā),啟發(fā)學(xué)生思考。
3、加強(qiáng)培養(yǎng)學(xué)生的邏輯思維本事就解決實(shí)際問題的本事,以及培養(yǎng)提高學(xué)生的自學(xué)本事,養(yǎng)成善于分析問題的習(xí)慣,進(jìn)行辨證唯物主義教育。
4、抓住公式的推導(dǎo)和內(nèi)在聯(lián)系;加強(qiáng)復(fù)習(xí)檢查工作;抓住典型例題的分析,講清解題的關(guān)鍵和基本方法,注重提高學(xué)生分析問題的本事。
5、自始至終貫徹教學(xué)四環(huán)節(jié),針對不一樣的教材資料選擇不一樣教法。
6、重視數(shù)學(xué)應(yīng)用意識及應(yīng)用本事的培養(yǎng)。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇九
日期
周次
學(xué)時(shí)
內(nèi)容
重點(diǎn)、難點(diǎn)
9.1-9.7
1
5
集合的含義與表示、
集合間的基本關(guān)系、
集合的基本運(yùn)算
會求兩個(gè)簡單集合的并集與交集;會求給定子集的補(bǔ)集;能使用venn圖表達(dá)集合的關(guān)系及運(yùn)算。難點(diǎn):理解概念
9.8-9.14
2
5
函數(shù)的概念、
函數(shù)的表示法
會求一些簡單函數(shù)的定義域和值域;能簡單應(yīng)用
9.15-9.21
3
5
函數(shù)的基本性質(zhì)、
學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì),理解函數(shù)單調(diào)性、最大(小)值及幾何意義
9.22-9.28
4
3
本章復(fù)習(xí)、測試
9.29-10.5
5
國慶放假
10.6-10.12
6
5
指數(shù)與指數(shù)冪的運(yùn)算、
指數(shù)函數(shù)及其性質(zhì)
掌握冪的運(yùn)算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點(diǎn)。難點(diǎn):理解概念
10.13-10.19
7
5
對數(shù)與對數(shù)運(yùn)算、
對數(shù)函數(shù)及其性質(zhì)
理解對數(shù)的概念及其運(yùn)算性質(zhì),知道用換底公式;探索并了解對數(shù)函數(shù)單調(diào)性與特殊點(diǎn);知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
10.20-10.26
8
5
冪函數(shù),復(fù)習(xí)、測試
從五個(gè)具體的冪函數(shù)(y=x,y=x2,y=x3,y=x-1,y=x1/2)圖象中認(rèn)識冪函數(shù)的一些性質(zhì)
10.27-11.2
9
5
方程的根與函數(shù)零點(diǎn),
二分法求方程近似解,
幾類不同增長的模型、函數(shù)模型應(yīng)用舉例
能夠借助計(jì)算器用二分法求相應(yīng)方程的近似解;
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的'含義
日期
周次
學(xué)時(shí)
內(nèi)容
重點(diǎn)、難點(diǎn)
11.3-11.9
10
期中復(fù)習(xí)及考試
11.10-11.16
11
5
講評試卷
分析知識點(diǎn)的掌握情況
11.17-11.23
12
5
任意角和弧度制,
任意角的三角函數(shù)
了解任意角的概念和弧度制,能進(jìn)行弧度與度的互化,借助單位圓理解任意角三角函數(shù)的定義。
11.24-11.30
13
5
三角函數(shù)的誘導(dǎo)公式,
三角函數(shù)的圖象與性質(zhì)
借助單位圓中的三角函數(shù)推導(dǎo)出誘導(dǎo)公式,能畫出
12.1-12.7
14
5
函數(shù)
三角函數(shù)模型的簡單應(yīng)用
了解函數(shù)
12.8-12.14
15
5
復(fù)習(xí)、測試
平面向量的實(shí)際背景及基本概念
通過力的分析,了解向量的實(shí)際背景,理解平面向量和向量相等的含義,理解向量的幾何表示
12.15-12.21
16
5
平面向量的線性運(yùn)算,
平面向量的基本定理及坐標(biāo)表示
掌握向量加、減法的運(yùn)算,數(shù)乘運(yùn)算,并理解其幾何意義以及兩個(gè)向量共線的含義。了解向量的基本定理、運(yùn)算性質(zhì)及其幾何意義。掌握平面向量的正交分解及其坐標(biāo)表示
12.22-12.28
17
5
平面向量的數(shù)量積
平面向量的應(yīng)用舉例
本章復(fù)習(xí)、測試
理解向量數(shù)量積的含義及其物理意義,會進(jìn)行數(shù)量積的運(yùn)算,會用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。用向量解決某些簡單的幾何問題。
12.29-1.4
18
5
兩角和與差的正弦、余弦和正切公式
用向量的數(shù)量積推導(dǎo)出兩角差的余弦公式,并能用兩角差的余弦公式導(dǎo)出兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式
1.5-1.11
19
5
簡單的三角恒等變換,期末復(fù)習(xí)
能運(yùn)用上述公式進(jìn)行簡單的恒等變換。進(jìn)行知識的梳理。
1.12-1.18
20
復(fù)習(xí)及期未考試
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十
本節(jié)課在教材中的地位和作用:《不等式的基本性質(zhì)》,對即將要學(xué)習(xí)的一元一次不等式的解法乃至高中的不等式的運(yùn)用都是非常重要的基礎(chǔ)。本節(jié)內(nèi)容掌握的好壞,將直接影響到后面的教學(xué)內(nèi)容。而對于不等式的基本性質(zhì)1和2,相信絕大部分的學(xué)生都不會有很大困難,而不等式的基本性質(zhì)3,通過對以往學(xué)生的了解,發(fā)現(xiàn)很多學(xué)生會忘記分正負(fù)兩種情況,因此在本節(jié)新課教學(xué)中,我采用了將不等式未知的性質(zhì)與等式已知的性質(zhì)進(jìn)行類比教學(xué),讓學(xué)生自己去發(fā)現(xiàn)驗(yàn)證不等式的性質(zhì)。
(一)知識與技能
1.掌握不等式的三條基本性質(zhì)。
2.運(yùn)用不等式的基本性質(zhì)對不等式進(jìn)行變形。
(二)過程與方法
1.通過等式的性質(zhì),探索不等式的性質(zhì),初步體會“類比”的數(shù)學(xué)思想。
2.通過觀察、猜想、驗(yàn)證、歸納等數(shù)學(xué)活動(dòng),經(jīng)歷從特殊到一般、由具體到抽象的認(rèn)知過程,感受數(shù)學(xué)思考過程的條理性,發(fā)展思維能力和語言表達(dá)能力。
(三)情感態(tài)度與價(jià)值觀
通過探究不等式基本性質(zhì)的活動(dòng),培養(yǎng)學(xué)生合作交流的意識和大膽猜想,樂于探究的良好思維品質(zhì)。
教學(xué)重點(diǎn): 探索不等式的三條基本性質(zhì)并能正確運(yùn)用它們將不等式變形。
教學(xué)難點(diǎn): 不等式基本性質(zhì)3的探索與運(yùn)用。
自主探究——合作交流
情景引入:1.舉例說明什么是不等式?
2.判斷下列各式是否成立?并說明理由。
( 1 )若x-4=12, 則x=16()
( 2 )若3x=12, 則 x=4()
( 3 )若x-4>12 則 x>16()
( 4 )若3x>12則 x>4()
【設(shè)計(jì)意圖】(1)、(2)小題喚起對舊知識等式的基本性質(zhì)的回憶,(3)、(4)小題引導(dǎo)學(xué)生大膽說出自己的想法。通過復(fù)習(xí)既找準(zhǔn)了舊知??奎c(diǎn),又創(chuàng)設(shè)了一種情境,給學(xué)生提供了類比、想象的空間,為后續(xù)學(xué)習(xí)做好了鋪墊。
教師導(dǎo)語:當(dāng)我們開始研究不等式的時(shí)候,自然會聯(lián)想到它是否與等式有相類似的性質(zhì)。這節(jié)課我們就通過類比來探究不等式的基本性質(zhì)。
溫故知新
問題1.由等式性質(zhì)1你能猜想一下不等式具有什么樣的性質(zhì)嗎?
等式性質(zhì)1:等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。
估計(jì)學(xué)生會猜:不等式兩邊都加上或減去同一個(gè)數(shù)(或同一個(gè)整式),所得結(jié)果仍是不等式。教師引導(dǎo):“=”沒有方向性,所以可以說所得結(jié)果仍是等式,而不等號:“>,<,≥,≤”具有方向性,我們應(yīng)該重點(diǎn)研究它在方向上的變化。
問題2.你能通過實(shí)驗(yàn)、猜想,得出進(jìn)一步的結(jié)論嗎?
同桌同學(xué)通過實(shí)例驗(yàn)證得出結(jié)論,師生共同總結(jié)不等式性質(zhì)1。
問題3.你能由等式性質(zhì)2進(jìn)一步猜想不等式還具有什么性質(zhì)嗎?
等式性質(zhì)2:等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),等式依然成立。
估計(jì)學(xué)生會猜:不等式兩邊都乘或除以同一個(gè)數(shù)(除數(shù)不能是0),不等號的方向不變。
你能和小伙伴一起來驗(yàn)證你們的猜想嗎?(教師鼓勵(lì)學(xué)生實(shí)踐是檢驗(yàn)真理的唯一標(biāo)準(zhǔn)。)
學(xué)生在小組內(nèi)合作交流,發(fā)現(xiàn)了在不等式兩邊都乘或除以同一個(gè)數(shù)時(shí),不等號的方向會出現(xiàn)兩種情況。教師進(jìn)一步引導(dǎo)學(xué)生通過分析、比較探索規(guī)律,從而形成共識,歸納概括出不等式性質(zhì)2和3。
【設(shè)計(jì)意圖】猜想作為教學(xué)的出發(fā)點(diǎn),啟發(fā)學(xué)生積極思維,探索規(guī)律,讓學(xué)生在“做”數(shù)學(xué)中學(xué)數(shù)學(xué),真正成為學(xué)習(xí)的主人。
問題4.在不等式兩邊都乘0會出現(xiàn)什么情況?
問題5.如果a、b、c表示任意數(shù),且a
【設(shè)計(jì)意圖】把文字語言轉(zhuǎn)化為數(shù)學(xué)語言,是數(shù)學(xué)學(xué)習(xí)中的一項(xiàng)基本能力,這里有意識地進(jìn)行滲透,指導(dǎo)學(xué)生先作變形再填不等號,對字母c的取值進(jìn)行討論,培養(yǎng)學(xué)生的分類意識,對培養(yǎng)學(xué)生的思維能力有十分重要的意義。
【想一想】不等式的基本性質(zhì)與等式的基本性質(zhì)有什么相同之處,有什么不同之處?
學(xué)生思考,獨(dú)立總結(jié)異同點(diǎn)。
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生把二者進(jìn)行比較,有助于加深對不等式基本性質(zhì)的理解,促成知識的“正遷移”。
綜合訓(xùn)練:你能運(yùn)用不等式的基本性質(zhì)解決問題嗎?
1、課本62頁例3
教師引導(dǎo)學(xué)生觀察每個(gè)問題是由a>b經(jīng)過怎樣的變形得到的,應(yīng)該應(yīng)用不等式的哪條基本性質(zhì)。由學(xué)生思考后口答。
【設(shè)計(jì)意圖】對學(xué)生進(jìn)行推理訓(xùn)練,讓學(xué)生明白,敘述要有根據(jù),進(jìn)一步提高學(xué)生的邏輯思維能力和語言表達(dá)能力。
2、你認(rèn)為在運(yùn)用不等式的基本性質(zhì)時(shí)哪一條性質(zhì)最容易出錯(cuò),應(yīng)該怎樣記住?
【設(shè)計(jì)意圖】及時(shí)進(jìn)行學(xué)習(xí)反思,總結(jié)經(jīng)驗(yàn),通過相互評價(jià)學(xué)習(xí)效果,及時(shí)發(fā)現(xiàn)問題、解決知識盲點(diǎn),培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力。
3.小明的困惑:
小明用不等式的基本性質(zhì)將不等式m>n進(jìn)行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大于4呢?
小明可糊涂了……聰明的同學(xué),你能告訴小軍他究竟錯(cuò)在什么地方嗎?同桌討論。
【設(shè)計(jì)意圖】通過替人排憂解難,強(qiáng)化對不等式三個(gè)基本性質(zhì)的理解與運(yùn)用,突出重點(diǎn),突破難點(diǎn)。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設(shè)計(jì)意圖】通過變式訓(xùn)練,加深學(xué)生對新知的理解,培養(yǎng)學(xué)生分析、探究問題的能力。
課堂小結(jié):
這節(jié)課你有哪些收獲?有何體會?你認(rèn)為自己的表現(xiàn)如何?教師引導(dǎo)學(xué)生回顧、思考、交流。
【設(shè)計(jì)意圖】回顧、總結(jié)、提高。學(xué)生自覺形成本節(jié)的課的知識網(wǎng)絡(luò)。
思考題:你來決策
咱們班的王帥同學(xué)準(zhǔn)備在五、一期間和他的爸爸、媽媽外出旅游。青年旅行社的標(biāo)準(zhǔn)為:大人全價(jià),小孩半價(jià);方正旅行社的標(biāo)準(zhǔn)為:大人、小孩一律八折。若兩家旅行社的基本價(jià)一樣,你能幫王帥同學(xué)考慮一下選擇哪家旅行社更合算嗎?
【設(shè)計(jì)意圖】利用所學(xué)的數(shù)學(xué)知識,解決生活中的問題,加強(qiáng)數(shù)學(xué)與生活的聯(lián)系,體驗(yàn)數(shù)學(xué)是描述現(xiàn)實(shí)世界的重要手段。既培養(yǎng)了學(xué)生用數(shù)學(xué)知識解決實(shí)際問題的能力,又樹立了學(xué)好數(shù)學(xué)的信心。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十一
1.學(xué)生情況分析:4個(gè)重點(diǎn)班的學(xué)生,基礎(chǔ)比較好,學(xué)習(xí)積極性高.普通班學(xué)生在基礎(chǔ)、學(xué)習(xí)習(xí)慣、學(xué)習(xí)自覺性等方面都有一定差距,因此在教學(xué)中需時(shí)時(shí)提醒學(xué)生,培養(yǎng)其自覺性。學(xué)生存在的最大問題是計(jì)算能力太差,學(xué)生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學(xué)中,重點(diǎn)在于強(qiáng)化基礎(chǔ)知識,培養(yǎng)學(xué)生的計(jì)算能力,提高思維能力,爭取每堂課教學(xué)一個(gè)知識點(diǎn),掌握一個(gè)知識點(diǎn)。
2.教材分析:本學(xué)期時(shí)間短,教學(xué)任務(wù)是必修4第二章,必修5,必修2涉及平面向量,解三角形,數(shù)列,空間幾何體,點(diǎn),線面的位置關(guān)系,直線與方程,圓與方程。
1、教案學(xué)案一體化繼續(xù)探索適合我校學(xué)生實(shí)際的課堂教學(xué)模式,為發(fā)揮學(xué)生的主體作用,切實(shí)提高課堂效率,本學(xué)期推行三圖四化的使用,基本操作辦法是,提前一天把學(xué)案發(fā)給學(xué)生,讓學(xué)生課前預(yù)習(xí),即先自主學(xué)習(xí),在課堂上,讓學(xué)生充分活動(dòng),在教師的問題引導(dǎo)下,積極思考,同學(xué)之間認(rèn)真討論,確定問題的解決的方法途徑和結(jié)論,教師在課堂上做好問題的引導(dǎo)和問題的變式,想方設(shè)法的激勵(lì)學(xué)生思考問題,在學(xué)生回答問題后對學(xué)生進(jìn)行肯定和鼓勵(lì)。
三圖四化工廠的設(shè)計(jì)
組內(nèi)成員先自行設(shè)計(jì)出學(xué)案初稿,然后經(jīng)備課組全體成員集體教研、討論,確定學(xué)案的定稿。由于課型不同,學(xué)案的環(huán)節(jié)也相應(yīng)存在著不同,但每個(gè)學(xué)案都應(yīng)包括學(xué)習(xí)目標(biāo)、學(xué)習(xí)重點(diǎn)、導(dǎo)學(xué)問題、學(xué)法指導(dǎo)、達(dá)標(biāo)訓(xùn)練等環(huán)節(jié),在設(shè)計(jì)中要把握問題的難度,在操作中低重心運(yùn)行,為保證高考升學(xué)取得大面積豐收,教學(xué)要面向全體學(xué)生,教學(xué)要求要低一些,讓后進(jìn)生能接受,調(diào)動(dòng)他們的學(xué)習(xí)積極性,促進(jìn)后進(jìn)生的轉(zhuǎn)變,由此來督促中上等學(xué)生的學(xué)習(xí)。
(1)學(xué)習(xí)目標(biāo)的制定。學(xué)習(xí)目標(biāo)要明確,學(xué)生能一目了然,切忌學(xué)習(xí)目標(biāo)過多,讓學(xué)生在課堂的開始就引起消極情緒。
(2)導(dǎo)學(xué)問題的設(shè)計(jì)。導(dǎo)學(xué)問題的設(shè)計(jì)不是把課本所學(xué)知識變成問題然后簡單邏列,而是根據(jù)教材的特點(diǎn),學(xué)生的實(shí)際水平能力,聯(lián)系社會現(xiàn)實(shí)問題,設(shè)計(jì)成不同層次的問題。問題的設(shè)計(jì)和問題的形式靈活多樣,可以是問題式、簡答式等等,根據(jù)學(xué)習(xí)內(nèi)容的不同采用不同的形式。
(3)學(xué)法指導(dǎo)。
學(xué)法指導(dǎo)也就是學(xué)習(xí)方法、活動(dòng)方式的指導(dǎo)及疑難問題的提示等。學(xué)生對每節(jié)課知識掌握的如何,學(xué)習(xí)方法的指導(dǎo)起到了關(guān)鍵作用。本環(huán)節(jié)的目的是讓學(xué)生在平時(shí)的學(xué)習(xí)過程中隨時(shí)掌握解決問題的方法,逐步由學(xué)會變?yōu)闀W(xué)。
(4)達(dá)標(biāo)訓(xùn)練的設(shè)計(jì)。為了使學(xué)到的知識及時(shí)得到鞏固、消化和吸收,進(jìn)而轉(zhuǎn)化為能力,要精心設(shè)計(jì)有階梯性、層次性的達(dá)標(biāo)訓(xùn)練,要注意此環(huán)節(jié)應(yīng)面向全體學(xué)生,發(fā)展各類學(xué)生的潛能,讓每個(gè)學(xué)生在每節(jié)課后都有收獲,都有成就感。
2、集體備課我們要克服以往集體備課中存在的問題,真正提高說課質(zhì)量,使集體備課對每位教師尤其是新教師起到有效的指導(dǎo)和幫助作用,將集體備課落到實(shí)處。具體做法如下:
(1)提前確定教學(xué)進(jìn)度、中心發(fā)言人(詳情見附表)及說課時(shí)間(每周五下午6、7節(jié))。
(2)中心發(fā)言人針對本年級學(xué)生實(shí)際情況,精心設(shè)計(jì)課堂結(jié)構(gòu),精選例題和作業(yè),設(shè)計(jì)好學(xué)案,可以適當(dāng)多選些題目,文科生在此基礎(chǔ)上可進(jìn)行適當(dāng)刪改(本學(xué)期在教學(xué)內(nèi)容上文理沒有什么差別),要注意低起點(diǎn)、多重復(fù)。說課時(shí),要說透教材、教法、教學(xué)重點(diǎn)和難點(diǎn),例題要說明選題意圖,要有詳細(xì)的解題過程、注意事項(xiàng)等,特別要在教學(xué)方法的改進(jìn)上多下功夫,要從學(xué)生現(xiàn)有的認(rèn)知水平出發(fā),設(shè)想學(xué)生可能出現(xiàn)的種種問題及應(yīng)對措施。作業(yè)要有針對性,層次性,既鞏固課上的知識點(diǎn)、題型,又要有一定的思維延展性,使文理科的學(xué)生在作業(yè)上有一定的區(qū)分度,使學(xué)有余力的學(xué)生有一個(gè)鍛煉、培養(yǎng)思維能力的平臺。
(3)每位教師在說課前都要做好準(zhǔn)備,認(rèn)真研究教材教法知道要說的是什么內(nèi)容,包括哪些基礎(chǔ)知識和基本題型,了解本部分內(nèi)容涉及的數(shù)學(xué)思想方法,做完說課稿上的例題、習(xí)題、作業(yè),對例題的講解和其中蘊(yùn)含的數(shù)學(xué)思想和解題技巧、計(jì)算技巧形成一個(gè)明確的認(rèn)識,并寫好初備提綱,以備說課時(shí)作出必要的補(bǔ)充和自己的見解。每位教師可以對說課稿進(jìn)行補(bǔ)充,也可就初備中發(fā)現(xiàn)的問題提問,然后全組教師進(jìn)行交流,以改進(jìn)教法、增刪例題和作業(yè),使說課稿更加完善和實(shí)用。
3、集體聽評課為提高每位教師的教育教學(xué)水平,依據(jù)學(xué)校教學(xué)計(jì)劃,青年教師每周聽課1節(jié),其他教師月至少2節(jié)。每周進(jìn)行一次集體聽評課活動(dòng)(詳情見附表)。評課時(shí)不僅要說優(yōu)點(diǎn),更要說不足和遺憾,提出意見和建議。當(dāng)局者迷,這樣做有利于授課教師認(rèn)清自身存在的問題,以改進(jìn)教學(xué),這也是對授課教師負(fù)責(zé)任的一種表現(xiàn)。通過評他人的課,對比查找自己存在的問題,有利于改進(jìn)教學(xué)。
4、教案:要寫明教學(xué)時(shí)間、課題、教學(xué)重點(diǎn)難點(diǎn)、教學(xué)方法、教學(xué)過程等。集體說課后,每位教師都要結(jié)合本班學(xué)生實(shí)際情況,精心設(shè)計(jì)課堂45分鐘應(yīng)如何分配到各個(gè)教學(xué)環(huán)節(jié),要提問什么問題,提問誰,例題怎樣分析,滲透什么思想方法。教學(xué)過程要有復(fù)習(xí)回顧、導(dǎo)入設(shè)計(jì)、師生活動(dòng)、例題的分析、作業(yè)設(shè)計(jì)與小結(jié)等。每位教師上完課之后都要思考兩個(gè)問題:我這節(jié)課上得如何?怎樣上這節(jié)課更好、最好?并結(jié)合課堂上出現(xiàn)的各種情況,認(rèn)真寫好教學(xué)反思,或總結(jié)經(jīng)驗(yàn),或反思失誤,或記錄靈感,為今后教學(xué)和科研工作積累最實(shí)用的資料。
5、上課要重視三圖四化的應(yīng)用,要用好學(xué)案,設(shè)計(jì)整個(gè)課堂的教學(xué)環(huán)節(jié);
(1)我們要率先遵守課堂常規(guī),及時(shí)到位候課,提醒學(xué)生做好上課的準(zhǔn)備。上課過程中,語言要簡潔生動(dòng),板書、解題、作圖要規(guī)范嚴(yán)謹(jǐn),不要出現(xiàn)知識性錯(cuò)誤。身教勝于言教,我們怎樣要求學(xué)生,就應(yīng)比他們做地更好,用自身的行動(dòng)為學(xué)生作好示范。
(2)把主動(dòng)權(quán)交給學(xué)生,多作主持人,少當(dāng)播音員。學(xué)生能做的事,就交給學(xué)生做,不要好心辦壞事。但必須指出,對于學(xué)生理解有困難、易混、易錯(cuò)的知識和題目,一定要多講、講透,千萬不要為了形式上的留時(shí)間、留空間造成學(xué)生在知識和方法上出現(xiàn)漏洞。
(3)針對學(xué)生存在的問題,繼續(xù)加強(qiáng)對學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),包括如何記筆記,記什么;培養(yǎng)先復(fù)習(xí)再做作業(yè)的習(xí)慣;獨(dú)立思考的習(xí)慣;遇到困難查教材、查筆記的習(xí)慣等。
6、作業(yè)批改批改作業(yè)前,全組成員要校對答案,匯總解題方法。批改作業(yè)的基本要求是全批全改、及時(shí)準(zhǔn)確。對錯(cuò)誤較多的題目,認(rèn)真分析原因,集中講評,并督促他們改正;對學(xué)生書寫、計(jì)算、作業(yè)整理方面存在的問題,要進(jìn)行學(xué)法指導(dǎo);認(rèn)真書寫評語,既要指出問題,又要多些鼓勵(lì)
7、坐班:全組教師嚴(yán)格遵守學(xué)校的坐班紀(jì)律,保持辦公室的安靜,搞好辦公室的衛(wèi)生,責(zé)任到人,全組教師共同努力,創(chuàng)設(shè)良好的辦公環(huán)境,提高干事的效率。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十二
(一)教學(xué)目標(biāo)
1.知識與技能
(1)理解兩個(gè)集合的并集與交集的含義,會求兩個(gè)簡單集合的并集和交集.
(2)能使用venn圖表示集合的并集和交集運(yùn)算結(jié)果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關(guān)的術(shù)語和符號,并會用它們正確進(jìn)行集合的并集與交集運(yùn)算。
2.過程與方法
通過對實(shí)例的分析、思考,獲得并集與交集運(yùn)算的法則,感知并集和交集運(yùn)算的實(shí)質(zhì)與內(nèi)涵,增強(qiáng)學(xué)生發(fā)現(xiàn)問題,研究問題的創(chuàng)新意識和能力.
3.情感、態(tài)度與價(jià)值觀
通過集合的并集與交集運(yùn)算法則的發(fā)現(xiàn)、完善,增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)知識和數(shù)學(xué)思想認(rèn)識客觀事物,發(fā)現(xiàn)客觀規(guī)律的興趣與能力,從而體會數(shù)學(xué)的應(yīng)用價(jià)值.
(二)教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):交集、并集運(yùn)算的含義,識記與運(yùn)用.
難點(diǎn):弄清交集、并集的含義,認(rèn)識符號之間的區(qū)別與聯(lián)系
(三)教學(xué)方法
在思考中感知知識,在合作交流中形成知識,在獨(dú)立鉆研和探究中提升思維能力,嘗試實(shí)踐與交流相結(jié)合.
(四)教學(xué)過程
教學(xué)環(huán)節(jié) 教學(xué)內(nèi)容 師生互動(dòng) 設(shè)計(jì)意圖
提出問題引入新知 思考:觀察下列各組集合,聯(lián)想實(shí)數(shù)加法運(yùn)算,探究集合能否進(jìn)行類似“加法”運(yùn)算.
(1)a = {1,3,5},b = {2,4,6},c = {1,2,3,4,5,6}
(2)a = {x | x是有理數(shù)},
b = {x | x是無理數(shù)},
c = {x | x是實(shí)數(shù)}.
師:兩數(shù)存在大小關(guān)系,兩集合存在包含、相等關(guān)系;實(shí)數(shù)能進(jìn)行加減運(yùn)算,探究集合是否有相應(yīng)運(yùn)算.
生:集合a與b的元素合并構(gòu)成c.
師:由集合a、b元素組合為c,這種形式的組合就是為集合的并集運(yùn)算. 生疑析疑,
導(dǎo)入新知
形成
概念
思考:并集運(yùn)算.
集合c是由所有屬于集合a或?qū)儆诩蟗的元素組成的,稱c為a和b的并集.
定義:由所有屬于集合a或集合b的元素組成的集合. 稱為集合a與b的并集;記作:a∪b;讀作a并b,即a∪b = {x | x∈a,或x∈b},venn圖表示為:
師:請同學(xué)們將上述兩組實(shí)例的共同規(guī)律用數(shù)學(xué)語言表達(dá)出來.
學(xué)生合作交流:歸納→回答→補(bǔ)充或修正→完善→得出并集的定義. 在老師指導(dǎo)下,學(xué)生通過合作交流,探究問題共性,感知并集概念,從而初步理解并集的含義.
應(yīng)用舉例 例1 設(shè)a = {4,5,6,8},b = {3,5,7,8},求a∪b.
例2 設(shè)集合a = {x | –1
例1解:a∪b = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:a∪b = {x |–1
師:求并集時(shí),兩集合的相同元素如何在并集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數(shù)軸,運(yùn)用數(shù)形結(jié)合思想求解.
生:在數(shù)軸上畫出兩集合,然后合并所有區(qū)間. 同時(shí)注意集合元素的互異性. 學(xué)生嘗試求解,老師適時(shí)適當(dāng)指導(dǎo),評析.
固化概念
提升能力
探究性質(zhì) ①a∪a = a, ②a∪ = a,
③a∪b = b∪a,
④ ∪b, ∪b.
老師要求學(xué)生對性質(zhì)進(jìn)行合理解釋. 培養(yǎng)學(xué)生數(shù)學(xué)思維能力.
形成概念 自學(xué)提要:
①由兩集合的所有元素合并可得兩集合的并集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運(yùn)算?
②交集運(yùn)算具有的運(yùn)算性質(zhì)呢?
交集的定義.
由屬于集合a且屬于集合b的所有元素組成的集合,稱為a與b的交集;記作a∩b,讀作a交b.
即a∩b = {x | x∈a且x∈b}
venn圖表示
老師給出自學(xué)提要,學(xué)生在老師的引導(dǎo)下自我學(xué)習(xí)交集知識,自我體會交集運(yùn)算的含義. 并總結(jié)交集的性質(zhì).
生:①a∩a = a;
②a∩ = ;
③a∩b = b∩a;
④a∩ ,a∩ .
師:適當(dāng)闡述上述性質(zhì).
自學(xué)輔導(dǎo),合作交流,探究交集運(yùn)算. 培養(yǎng)學(xué)生的自學(xué)能力,為終身發(fā)展培養(yǎng)基本素質(zhì).
應(yīng)用舉例 例1 (1)a = {2,4,6,8,10},
b = {3,5,8,12},c = {8}.
(2)新華中學(xué)開運(yùn)動(dòng)會,設(shè)
a = {x | x是新華中學(xué)高一年級參加百米賽跑的同學(xué)},
b = {x | x是新華中學(xué)高一年級參加跳高比賽的同學(xué)},求a∩b.
例2 設(shè)平面內(nèi)直線l1上點(diǎn)的集合為l1,直線l2上點(diǎn)的集合為l2,試用集合的運(yùn)算表示l1,l2的位置關(guān)系. 學(xué)生上臺板演,老師點(diǎn)評、總結(jié).
例1 解:(1)∵a∩b = {8},
∴a∩b = c.
(2)a∩b就是新華中學(xué)高一年級中那些既參加百米賽跑又參加跳高比賽的同學(xué)組成的集合. 所以,a∩b = {x | x是新華中學(xué)高一年級既參加百米賽跑又參加跳高比賽的同學(xué)}.
例2 解:平面內(nèi)直線l1,l2可能有三種位置關(guān)系,即相交于一點(diǎn),平行或重合.
(1)直線l1,l2相交于一點(diǎn)p可表示為 l1∩l2 = {點(diǎn)p};
(2)直線l1,l2平行可表示為
l1∩l2 = ;
(3)直線l1,l2重合可表示為
l1∩l2 = l1 = l2. 提升學(xué)生的動(dòng)手實(shí)踐能力.
歸納總結(jié) 并集:a∪b = {x | x∈a或x∈b}
交集:a∩b = {x | x∈a且x∈b}
性質(zhì):①a∩a = a,a∪a = a,
②a∩ = ,a∪ = a,
③a∩b = b∩a,a∪b = b∪a. 學(xué)生合作交流:回顧→反思→總理→小結(jié)
老師點(diǎn)評、闡述 歸納知識、構(gòu)建知識網(wǎng)絡(luò)
課后作業(yè) 1.1第三課時(shí) 習(xí)案 學(xué)生獨(dú)立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合a = {–1,a2 + 1,a2 – 3},b = {– 4,a – 1,a + 1},且a∩b = {–2},求a的值.
【解析】法一:∵a∩b = {–2},∴–2∈b,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當(dāng)a = –1時(shí),a = {–1,2,–2},b = {– 4,–2,0},a∩b = {–2}.
當(dāng)a = –3時(shí),a = {–1,10,6},a不合要求,a = –3舍去
∴a = –1.
法二:∵a∩b = {–2},∴–2∈a,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當(dāng)a = 1時(shí),a = {–1,2,–2},b = {– 4,0,2},a∩b≠{–2}.
當(dāng)a = –1時(shí),a = {–1,2,–2},b = {– 4,–2,0},a∩b ={–2},∴a = –1.
例2 集合a = {x | –1
(1)若a∩b = ,求a的取值范圍;
(2)若a∪b = {x | x<1},求a的取值范圍.
【解析】(1)如下圖所示:a = {x | –1
∴數(shù)軸上點(diǎn)x = a在x = – 1左側(cè).
∴a≤–1.
(2)如右圖所示:a = {x | –1
∴數(shù)軸上點(diǎn)x = a在x = –1和x = 1之間.
∴–1
例3 已知集合a = {x | x2 – ax + a2 – 19 = 0},b = {x | x2 – 5x + 6 = 0},c = {x | x2 + 2x – 8 = 0},求a取何實(shí)數(shù)時(shí),a∩b 與a∩c = 同時(shí)成立?
【解析】b = {x | x2 – 5x + 6 = 0} = {2,3},c = {x | x2 + 2x – 8 = 0} = {2,– 4}.
由a∩b 和a∩c = 同時(shí)成立可知,3是方程x2 – ax + a2 – 19 = 0的解. 將3代入方程得a2 – 3a – 10 = 0,解得a = 5或a = –2.
當(dāng)a = 5時(shí),a = {x | x2 – 5x + 6 = 0} = {2,3},此時(shí)a∩c = {2},與題設(shè)a∩c = 相矛盾,故不適合.
當(dāng)a = –2時(shí),a = {x | x2 + 2x – 15 = 0} = {3,5},此時(shí)a∩b 與a∩c = ,同時(shí)成立,∴滿足條件的實(shí)數(shù)a = –2.
例4 設(shè)集合a = {x2,2x – 1,– 4},b = {x – 5,1 – x,9},若a∩b = {9},求a∪b.
【解析】由9∈a,可得x2 = 9或2x – 1 = 9,解得x =±3或x = 5.
當(dāng)x = 3時(shí),a = {9,5,– 4},b = {–2,–2,9},b中元素違背了互異性,舍去.
當(dāng)x = –3時(shí),a = {9,–7,– 4},b = {–8,4,9},a∩b = {9}滿足題意,故a∪b = {–7,– 4,–8,4,9}.
當(dāng)x = 5時(shí),a = {25,9,– 4},b = {0,– 4,9},此時(shí)a∩b = {– 4,9}與a∩b = {9}矛盾,故舍去.
綜上所述,x = –3且a∪b = {–8,– 4,4,–7,9}.
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十三
本節(jié)課是蘇教版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修(2)第2章第三節(jié)的第一節(jié)課。該課是在二維平面直角坐標(biāo)系基礎(chǔ)上的推廣,是空間立體幾何的代數(shù)化。教材通過一個(gè)實(shí)際問題的分析和解決,讓學(xué)生感受建立空間直角坐標(biāo)系的必要性,內(nèi)容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導(dǎo)學(xué)生積極地參與到知識的探究過程中。同時(shí),通過對《空間直角坐標(biāo)系》的學(xué)習(xí)和掌握將對今后學(xué)習(xí)本節(jié)內(nèi)容《空間兩點(diǎn)間的距離》和選修2—1內(nèi)容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標(biāo)系。
一方面學(xué)生通過對空間幾何體:柱、錐、臺、球的學(xué)習(xí),處理了空間中點(diǎn)、線、面的關(guān)系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學(xué)生剛剛學(xué)習(xí)了解析幾何的基礎(chǔ)內(nèi)容:直線和圓,對建立平面直角坐標(biāo)系,根據(jù)坐標(biāo)利用代數(shù)的方法處理問題有了一定的認(rèn)識,因此也建立了一定的轉(zhuǎn)化和數(shù)形結(jié)合的思想。這兩方面都為學(xué)習(xí)本課內(nèi)容打下了基礎(chǔ)。
1、知識與技能
①通過具體情境,使學(xué)生感受建立空間直角坐標(biāo)系的必要性
②了解空間直角坐標(biāo)系,掌握空間點(diǎn)的坐標(biāo)的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2、過程與方法
①結(jié)合具體問題引入,誘導(dǎo)學(xué)生探究
②類比學(xué)習(xí),循序漸進(jìn)
3、情感態(tài)度與價(jià)值觀
通過用類比的數(shù)學(xué)思想方法探究新知識,使學(xué)生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實(shí)際問題的引入和解決,讓學(xué)生體會數(shù)學(xué)的實(shí)踐性和應(yīng)用性,感受數(shù)學(xué)刻畫生活的作用,不斷地拓展自己的思維空間。
本課是本節(jié)第一節(jié)課,關(guān)鍵是空間直角坐標(biāo)系的建立,對今后相關(guān)內(nèi)容的學(xué)習(xí)有著直接的影響作用,所以本課教學(xué)重點(diǎn)確立為“空間直角坐標(biāo)系的理解”。
“通過建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,確定空間點(diǎn)的坐標(biāo)”。
先通過具體問題回顧平面直角坐標(biāo)系,使學(xué)生體會用坐標(biāo)刻畫平面內(nèi)任意點(diǎn)的位置的方法,進(jìn)而設(shè)置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據(jù)已有一定空間思維,所以能較容易得出“第三根軸”的建立,進(jìn)而感受逐步發(fā)展得到“空間直角坐標(biāo)系”的建立,再逐步掌握利用坐標(biāo)表示空間任意點(diǎn)的位置。總得來說,關(guān)鍵是具體問題情境的設(shè)立,不斷地讓學(xué)生感受,交流,討論。
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十四
(1)理解子集、真子集、補(bǔ)集、兩個(gè)集合相等概念;
(2)了解全集、空集的意義,
(3)掌握有關(guān)的符號及表示方法,會用它們正確表示一些簡單的集合,培養(yǎng)學(xué)生的符號表示的能力;
(4)會求已知集合的子集、真子集,會求全集中子集在全集中的補(bǔ)集;
(5)能判斷兩集合間的包含、相等關(guān)系,并會用符號及圖形(文氏圖)準(zhǔn)確地表示出來,培養(yǎng)學(xué)生的數(shù)學(xué)結(jié)合的數(shù)學(xué)思想;
(6)培養(yǎng)學(xué)生用集合的觀點(diǎn)分析問題、解決問題的能力.
教學(xué)重點(diǎn):子集、補(bǔ)集的概念
教學(xué)難點(diǎn) :弄清元素與子集、屬于與包含之間的區(qū)別
教學(xué)用具:幻燈機(jī)
教學(xué)過程 設(shè)計(jì)
上節(jié)課我們學(xué)習(xí)了集合、元素、集合中元素的三性、元素與集合的關(guān)系等知識.
【提出問題】(投影打出)
已知 , , ,問:
1.哪些集合表示方法是列舉法.
2.哪些集合表示方法是描述法.
3.將集m、集從集p用圖示法表示.
4.分別說出各集合中的元素.
5.將每個(gè)集合中的元素與該集合的關(guān)系用符號表示出來.將集n中元素3與集m的關(guān)系用符號表示出來.
6.集m中元素與集n有何關(guān)系.集m中元素與集p有何關(guān)系.
【找學(xué)生回答】
1.集合m和集合n;(口答)
2.集合p;(口答)
3.(筆練結(jié)合板演)
4.集m中元素有-1,1;集n中元素有-1,1,3;集p中元素有-1,1.(口答)
5. , , , , , , , (筆練結(jié)合板演)
6.集m中任何元素都是集n的元素.集m中任何元素都是集p的元素.(口答)
【引入】在上面見到的集m與集n;集m與集p通過元素建立了某種關(guān)系,而具有這種關(guān)系的兩個(gè)集合在今后學(xué)習(xí)中會經(jīng)常出現(xiàn),本節(jié)將研究有關(guān)兩個(gè)集合間關(guān)系的問題.
1.子集
(1)子集定義:一般地,對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,我們就說集合a包含于集合b,或集合b包含集合a。
記作: 讀作:a包含于b或b包含a
當(dāng)集合a不包含于集合b,或集合b不包含集合a時(shí),則記作:a b或b a.
性質(zhì):① (任何一個(gè)集合是它本身的子集)
② (空集是任何集合的子集)
【置疑】能否把子集說成是由原來集合中的部分元素組成的集合?
【解疑】不能把a(bǔ)是b的子集解釋成a是由b中部分元素所組成的集合.
因?yàn)閎的子集也包括它本身,而這個(gè)子集是由b的全體元素組成的.空集也是b的子集,而這個(gè)集合中并不含有b中的元素.由此也可看到,把a(bǔ)是b的子集解釋成a是由b的部分元素組成的集合是不確切的.
(2)集合相等:一般地,對于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí)集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,記作a=b。
例: ,可見,集合 ,是指a、b的所有元素完全相同.
(3)真子集:對于兩個(gè)集合a與b,如果 ,并且 ,我們就說集合a是集合b的真子集,記作: (或 ),讀作a真包含于b或b真包含a。
【思考】能否這樣定義真子集:“如果a是b的子集,并且b中至少有一個(gè)元素不屬于a,那么集合a叫做集合b的真子集.”
集合b同它的真子集a之間的關(guān)系,可用文氏圖表示,其中兩個(gè)圓的內(nèi)部分別表示集合a,b.
【提問】
(1) 寫出數(shù)集n,z,q,r的包含關(guān)系,并用文氏圖表示。
(2) 判斷下列寫法是否正確
① a ② a ③ ④a a
性質(zhì):
(1)空集是任何非空集合的真子集。若 a ,且a≠ ,則 a;
(2)如果 , ,則 .
例1 寫出集合 的所有子集,并指出其中哪些是它的真子集.
解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集.
【注意】(1)子集與真子集符號的方向。
(2)易混符號
①“ ”與“ ”:元素與集合之間是屬于關(guān)系;集合與集合之間是包含關(guān)系。如 r,{1} {1,2,3}
②{0}與 :{0}是含有一個(gè)元素0的集合, 是不含任何元素的集合。
如: {0}。不能寫成 ={0}, ∈{0}
例2 見教材p8(解略)
例3 判斷下列說法是否正確,如果不正確,請加以改正.
(1) 表示空集;
(2)空集是任何集合的真子集;
(3) 不是 ;
(4) 的所有子集是 ;
(5)如果 且 ,那么b必是a的真子集;
(6) 與 不能同時(shí)成立.
解:(1) 不表示空集,它表示以空集為元素的集合,所以(1)不正確;
(2)不正確.空集是任何非空集合的真子集;
(3)不正確. 與 表示同一集合;
(4)不正確. 的所有子集是 ;
(5)正確
(6)不正確.當(dāng) 時(shí), 與 能同時(shí)成立.
例4 用適當(dāng)?shù)姆? , )填空:
(1) ; ; ;
(2) ; ;
(3) ;
(4)設(shè) , , ,則a b c.
解:(1)0 0 ;
(2) = , ;
(3) , ∴ ;
(4)a,b,c均表示所有奇數(shù)組成的集合,∴a=b=c.
【練習(xí)】教材p9
用適當(dāng)?shù)姆? , )填空:
(1) ; (5) ;
(2) ; (6) ;
(3) ; (7) ;
(4) ; (8) .
解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .
提問:見教材p9例子
1.補(bǔ)集:一般地,設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即 ),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集),記作 ,即
.
a在s中的補(bǔ)集 可用右圖中陰影部分表示.
性質(zhì): s( sa)=a
如:(1)若s={1,2,3,4,5,6},a={1,3,5},則 sa={2,4,6};
(2)若a={0},則 na=n*;
(3) rq是無理數(shù)集。
2.全集:
如果集合s中含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集,全集通常用表示.
注: 是對于給定的全集 而言的,當(dāng)全集不同時(shí),補(bǔ)集也會不同.
例如:若 ,當(dāng) 時(shí), ;當(dāng) 時(shí),則 .
例5 設(shè)全集 , , ,判斷 與 之間的關(guān)系.
高一數(shù)學(xué)教學(xué)計(jì)劃 高一數(shù)學(xué)教學(xué)計(jì)劃指導(dǎo)思想篇十五
本學(xué)期,我負(fù)責(zé)高一三、四班的數(shù)學(xué)教學(xué)。這兩個(gè)班有138名學(xué)生。初中生基礎(chǔ)薄弱,整體水平不高。從兩周的課堂來看,學(xué)生的學(xué)習(xí)積極性仍然很高,有很多學(xué)生喜歡提問。但由于基礎(chǔ)知識薄弱,學(xué)習(xí)習(xí)慣差,自我控制能力差,無法正確定位自己,課堂效率普遍,教學(xué)工作存在必要的難度。為了做好本學(xué)期的教學(xué)工作,特制定以下教學(xué)工作計(jì)劃。
(1)掌握必要的數(shù)學(xué)基礎(chǔ)知識和技能,理解基本數(shù)學(xué)概念和數(shù)學(xué)結(jié)論的實(shí)質(zhì),體驗(yàn)數(shù)學(xué)思想和方法。
(2)培養(yǎng)學(xué)生的邏輯思維能力、計(jì)算能力、空間想象能力,以及綜合運(yùn)用相關(guān)數(shù)學(xué)知識分析和解決問題的能力。使學(xué)生逐步學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的技能,運(yùn)用歸納、演繹、類比的方法進(jìn)行推理,正確、系統(tǒng)地表達(dá)推理過程的技能。
(3)根據(jù)數(shù)學(xué)學(xué)科特點(diǎn),加強(qiáng)學(xué)習(xí)目的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的意識和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣、求實(shí)的科學(xué)態(tài)度、頑強(qiáng)的學(xué)習(xí)毅力和獨(dú)立思考的精神,探索創(chuàng)新。
(4)使學(xué)生具有必要的數(shù)學(xué)視野,逐步理解數(shù)學(xué)的科學(xué)價(jià)值、應(yīng)用價(jià)值和文化價(jià)值,形成批判性思維習(xí)慣,倡導(dǎo)數(shù)學(xué)的理性精神,體驗(yàn)數(shù)學(xué)的審美意義,理解普遍運(yùn)動(dòng)、變化、創(chuàng)新、創(chuàng)新,數(shù)學(xué)相互聯(lián)系、相互轉(zhuǎn)化,進(jìn)一步樹立辯證唯物主義和歷史唯物主義的世界觀。
(5)通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、得出結(jié)論,學(xué)習(xí)解決實(shí)際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時(shí)期。教師負(fù)有雙重責(zé)任。他們不僅要不斷夯實(shí)基礎(chǔ),加強(qiáng)綜合技能的培養(yǎng),還要滲透高考思想方法,準(zhǔn)備三年的學(xué)習(xí)。
(i)情感目標(biāo)
(1)通過問題分析的教學(xué)方法,培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
(2)提供生活背景。通過數(shù)學(xué)建模,讓學(xué)生認(rèn)識到數(shù)學(xué)是存在的,培養(yǎng)學(xué)習(xí)數(shù)學(xué)和運(yùn)用數(shù)學(xué)的意識