無論是身處學校還是步入社會,大家都嘗試過寫作吧,借助寫作也可以提高我們的語言組織能力。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?下面我給大家整理了一些優(yōu)秀范文,希望能夠幫助到大家,我們一起來看一看吧。
乘法分配律教學反思簡短篇一
師:我們先來估計一下他們大約用了多少塊瓷磚好嗎?
生:思考并回答,只要是學生說的合理就可以
估計的方法很多:估計一行有10塊,一共有10行,10×10=100(塊)
估計左邊有50塊,右邊有50塊,合起來一共有100塊。
……
師:那到底誰的估計最合適呢?讓我們共同來研究一下好嗎?
師:請同學們用自己喜歡的方式做到練習本上。把你想到的算法都寫出來。
先獨立思考,然后在小組內(nèi)交流一下。
生:思考、交流
師:看到剛才同學們積極思考的樣子,老師很想知道你們是怎么想的?誰想告訴老師和同學們?
提醒其他學生認真傾聽,同時對同伴的回答進行補充。
可能出現(xiàn)的結(jié)果:(1)(6+4)×9=10×9=90(塊)
(2)6×9+4×9=54+36=90(塊)
(3)6×9=54(塊)4×9=36(塊)54+36=90(塊)
學生還有可能出現(xiàn)其它的不同的思考方法,但只要有理由老師都要進行肯定。
學生思考出的算式可以讓學生自己寫到黑板上,然后老師根據(jù)自己的需要邊總結(jié)邊調(diào)整出如下的板書:
(1)(6+4)×9=10×9=90(塊)
(2)6×9+4×9=54+36=90(塊
師:通過計算我們可以看出工人師傅一共貼了90塊瓷磚,那誰估計的答案最合適呢?掌聲鼓勵下自己。
師:仔細觀察兩種方法有什么不同
生:第一種方法是先求出一行有多少塊,再求一共有多少塊;第二種方法是先求出一面墻用了多少塊,再求出另一面墻用了多少塊,最后求一共用了多少塊。
師:我們來比較一下這兩個算式的結(jié)果如何?
生:相等
師:用什么符號連接(結(jié)果相等,用等號連接)
(6+4)×9=6×9+4×9,(板書)
教學反思:本節(jié)課的重點和難點是對規(guī)律的探索,在得出算式(6+4)×9=6×9+4×9以后,我沒有用例子讓學生很快的歸納出一個一般的結(jié)論,而是引導學生觀察、發(fā)現(xiàn)、猜想、舉例驗證、歸納概括等,讓學生把靜態(tài)的知識結(jié)論轉(zhuǎn)化成動態(tài)的探索對象,使認知任務本身有了一種誘發(fā)學生較高思維水平的潛力,給規(guī)律的探索過程注入了生命力。
乘法分配律教學反思簡短篇二
這節(jié)課是在學生學習乘法分配律基礎上進行教學的。在第一課時學生對于乘法分配律的意義已經(jīng)有了初步的理解,對于乘法分配律的結(jié)構(gòu)也有了一定的認識,能初步利用乘法分配律進行簡便計算。本課內(nèi)容的教學重點是靈活根據(jù)題型應用乘法分配律進行簡便計算。
成功之處:
1.課始通過復習乘法分配律的意義,以及應用乘法分配律進行填空的練習,讓學生進一步熟悉乘法分配律的結(jié)構(gòu)及特點,加深對乘法分配律意義的理解。
2.分類型進行練習。采用邊講邊練相結(jié)合的方法,讓學生通過專項練習進一步鞏固每一類型題目。共分為四類:第一類是a×(b+c);
第二類是a×b+a×c;第三類是a×b+a;第四類是接近整十整百的數(shù)乘一個數(shù)。整體教學就是穩(wěn)扎穩(wěn)打,一步一個腳印,讓所有學生都能掌握其中的變式練習,然后再進行綜合訓練,讓學生靈活解決問題。
不足之處:
1.由于分類型講解練習,導致時間分配不足,個別題型沒有足夠的時間進行練習。
2.學生的注意力集中不夠,導致個別學生對某一類型的題目沒有掌握。
再教設計:
1.加強小組合作的學習,能自己解決的問題,就自己解決,能小組解決的問題,就小組解決,充分發(fā)揮小組組際間的交流,留給學生更多的時間和空間,發(fā)揮學生主體作用。
2.抓住易出錯類型題,重點講解,重點訓練。
乘法分配律教學反思簡短篇三
《探索與發(fā)現(xiàn)(三)乘法分配律》教學反思
東新四小學 王唯
教學內(nèi)容:
小學四年級數(shù)學(上)《探索與發(fā)現(xiàn)(三)》乘法分配律》教材第48頁
教學目標:
1、經(jīng)歷探索的過程,發(fā)現(xiàn)乘法分配律,并能用字母表示。
2、會用乘法分配律進行一些簡便計算。
教學重點:理解乘法分配律的特點。
教學難點:乘法分配律的正確應用。
教學過程:
(出示課件1)計算
35×2×5=35×(2×)
(60×25)×4=65×(×4)
(125×5)×8=(125×)×5
(3×4)×5 × 6=(×)×(×)
師:上節(jié)課,經(jīng)過同學們的探索,我們發(fā)現(xiàn)了乘法交換律和結(jié)合律,并會應用這些定律進行簡便計算,今天咱們繼續(xù)探索,看看我們又會發(fā)現(xiàn)什么規(guī)律。讓我們一起走上探索之路。
(出現(xiàn)課件2)
師:大家看,工人叔叔正在貼瓷磚呢,看到這幅圖,你發(fā)現(xiàn)了哪些數(shù)學信息?
生:我發(fā)現(xiàn)有兩個叔叔在貼瓷磚
生:我發(fā)現(xiàn)一個叔叔貼了4列,每列貼9塊,另一個叔叔貼了6列,每列貼了9塊。
師:你最想知道什么問題?
生:我想知道工人叔叔一共貼了多少塊瓷磚?(按鼠標出示問題) 師:你能估計出工人叔叔一共貼了多少塊瓷磚嗎?
生:我估計大約有100塊瓷磚
生:我估計大約有90塊瓷磚。
師:請同學們用自己喜歡的方法來計算瓷磚究竟有多少塊。(學生做,小組討論,教師巡視)
師:誰來向大家介紹一下自己的做法?
生:6×9+4×9(板書)
=54+36
=90
分別算出正面和側(cè)面貼的塊數(shù),再相加,就是貼的總塊數(shù)。
生:(6+4)×9(板書)
= 10×9
=90(塊)
因為每列都是9塊,所以我先算出一共有多少列,再用列數(shù)去乘每列的塊數(shù),就是一共貼瓷磚的塊數(shù)。
師:同學們的計算方法都很好,請同學們仔細觀察兩種算法,你能發(fā)現(xiàn)什么?
生:我發(fā)現(xiàn)計算方法不同,但結(jié)果卻是一樣的。
6×9+4×9 = (6+4)×9(板書)
師:請同學們仔細觀察上面兩道算式的特點,你能再舉一些這樣類似的例子嗎?
(學生舉例,教師板書)
師:這幾們同學舉的例子符合要求嗎?請在小組中驗證一下。 (小組匯報)
小組1:符合要求,因為每組中兩個算式都是相等的。
小組2:在每組的兩個算式中,一個是兩個數(shù)的和去乘一個數(shù),另一個是用這兩個數(shù)分別是去乘同一個數(shù),再相加,符合要求。
(板書用=連接算式)
師:比較等號左右兩邊的算式,從它們的特點和結(jié)果相等中你能發(fā)現(xiàn)什么規(guī)律,小組再討論一下。
小組1:我們小組發(fā)現(xiàn),只要符合上面題目要求的算式,結(jié)果都是一樣的。
小組2:我們小組發(fā)現(xiàn),兩個不同的數(shù)分別去和同一個數(shù)相乘,然后再相加,可以先把這兩個數(shù)相加再一起去乘第三個數(shù),結(jié)果不變。 結(jié)論(課件2):師:兩個數(shù)的和同一個數(shù)相乘,可以把兩個加數(shù)分別同這個數(shù)相乘,再把兩個積相加,結(jié)果不變。這叫做 乘 法 分 配 律。它是我們學習的關于乘法的第三個定律。
師:大家齊讀一遍。
師:和同桌說一說自己對乘法分配律的理解。
師:上節(jié)課我們學習了用字母來表示乘法交換律和結(jié)合律,現(xiàn)在你能用字母的形式表示出乘法分配律嗎?用a,b,c分別表示這三個數(shù),試著寫一寫吧。
(a+b)×c=a×c+b×c
師:這叫做乘法分配律
1、計算
(80+4)×25 34×72+34×28
師:觀察算式特點,看是否符合要求,能否應用乘法分配律使計算簡便。
2、判斷正誤
( 25 + 7 )×4 = 25 ×4 ×7×4 ( )
35×9 + 35
= 35×( 9 + 1 )
= 350 - - - - ( )
3、填一填
(12+40)×3=× 3 +×3
15×(40 + 8) = 15×+ 15×
78×20+22×20=(+ )×20
師:說說這節(jié)課你有什么收獲?
師:今天同學們通過自己的探索,發(fā)現(xiàn)了乘法分配律,你們真的很棒。乘法分配律是一條很重要的運算定律。應用乘法分配律既能使一些計算簡便,也能幫助我們解決生活中的一些數(shù)學問題,在我們的生活和學習中應用非常廣泛。同學們要在理解的基礎上牢牢記住它,希望它永遠成為你的好朋友,伴你生活、成長。
[板書設計]
探索與發(fā)現(xiàn)(三)
-----乘法分配律
(a+b)×c=a×c+b×c
6×9+4×9 =(6+4)×9
(40+4)×25 = 40×25+4×25
(64+36)×42 = 42×64+42×36
乘法分配律教學反思簡短篇四
今天靜下心來觀看了省賽課中葛老師執(zhí)教的.《乘法分配律》一課。她巧妙引領。葛老師非常自然的借助孩子們喜愛的農(nóng)場游戲,引入問題“誰能幫老師算算一共有多少菜?你能列出綜合算式嗎?先求什么,后求什么?”一方面教師問題的指向性簡練明確可以引導學生列出綜合算式,另一方面借助情景能有效的幫助學生理解算式的道理,明確意義。更為巧妙的是此情景內(nèi)容豐富可以列出不同的算式:
2×3+3×4和(2+4)×32×5+8×5和(2+8)×5(10+15)×4和10×4+15×4為后面的“觀察、分類和探究”做好鋪墊。
大膽放手。在第一個“求菜”的情境中,是在教師的引導下學生順利完成了學習的過程,然而后面的“求花”和“求果樹”就是放手讓學生自己探究了,很自然的激發(fā)了學生的探究欲望,分別列出了兩組算式:(2+8)×5和2×5+8×5以及(10+15)×4和10×4+15×4。
這樣在學生喜愛的農(nóng)場情景中,巧妙的引發(fā)出六道算式,為進一步的觀察和探究埋下了伏筆。
得出6個算式后,葛老師再次拋出問題:“這六個算式讓你分分類,你打算分幾類?理由是什么?”然后葛老師又引導學生同桌先討論,然后集體匯報,于無形中讓學生經(jīng)歷了各個層面的探究活動。讓學生觀察——猜想——舉例驗證——,和從“特例”進行驗證等一系列的活動,最后歸納出一普遍性的規(guī)律。
當結(jié)論得出后,葛老師并不是將字母表示進行簡單的灌輸,而是巧妙的借助點子圖將用字母表示乘法分配律的過程變?yōu)橐蛐瓒O,從而呼之欲出。最后教師還通過乘法的意義加深學生對乘法分配律的理解,并且教師還通過兩組以前學過的兩位數(shù)乘一位數(shù)和兩位數(shù)乘兩位數(shù)來打通乘法分配律與以前知識的聯(lián)系。
總之,本節(jié)課在學習方式上自主學習與合作探究并存,在思維發(fā)展上,教師引導與放手相結(jié)合,整個學習過程,因需而設,充滿了探究。
乘法分配律教學反思簡短篇五
一、讓學生從實質(zhì)上理解乘法分配律
在乘法分配律的教學中,如果只求形式把握不求實質(zhì)理解,一方面從認識的角度看是不嚴謹?shù)模ㄐ问缴系牟煌耆珰w納不一定得出真理),另一方面很容易造成學生不求甚解、囫圇吞棗的不良認知習慣。如果滿足于從形式上掌握乘法分配律,對于學生的后續(xù)發(fā)展也極為不利。因此,在教學時先出示了這樣一道例題:一件茄克衫65元,一條褲子35元。王老師買5件茄克衫和5條褲子,一共要花多少元?學生用了兩種解答方法即:(65+35)×5=65×5+35×5。借助對同一實際問題的不同解決方法讓學生體會乘法分配律的合理性。
二、突破乘法分配律的教學難點
相對于乘法運算中的其他規(guī)律而言,乘法分配律的結(jié)構(gòu)是最復雜的,等式變形的能力是教學的難點。為了突破教學難點,我設計了一系列的練習。
1、在□里填數(shù),○里填運算符號:如(25+45)×4=□○□○□○□……
2、在相等的一組算式后面打“√”:如16×7+24×7(16+24)×7□……
在這一組題目中教者重點評析了最后一道題:40×50+50×9040×(50+90)□。先讓學生說說著一題為什么不能打√,再根據(jù)乘法分配律的特征,分別寫出與左右算式相等的式子。通過練習學生對乘法分配律有了進一步的認識,又讓學生照上面的樣子寫出的幾個這樣的等式,最后歸納出了乘法分配律的字母表示:(a+b)×c=a×c+b×c。
實際上課堂時學生對于能否找到反例的活動很感興趣,可以嘗試讓學生也提幾個反例,經(jīng)過討論逐個否決,在這樣的過程中,學生的等式變形能力能夠得到很大提高,有益于加深對乘法分配律的認識。
乘法分配律教學反思簡短篇六
小學數(shù)學《乘法分配律》教學反思教學乘法分配律之后,發(fā)現(xiàn)學生的正確率很低,特別是對乘法結(jié)合律與乘法分配律極容易混淆。針對這種情況,我認為在教學中應該注意這些問題:
1、乘法分配律的教學既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學中通過解決買水果濟青高速公路全長約多少千米?這一問題,結(jié)合具體的生活情景,得到了(110+90)2=1102+902這一結(jié)果。這時我們往往比較注意了等式兩邊的外形結(jié)構(gòu)特點,即兩數(shù)的和乘一個數(shù)=兩個積的和。缺乏從乘法意義角度的理解。所以這里我們不僅要從解題思路的角度理解兩個算式是相等的,還要從乘法的意義的角度理解,即左邊表示200個2,右邊也表示200個2,所以(110+90)2=1102+902
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩數(shù)的和乘一個數(shù)或兩個積的和。在練習中(40+4)25與(404)25這種題學生特別容易出現(xiàn)錯誤。為了學生更好地掌握可以多進行一些對比練習。如:進行題組對比15(84)和15(8+4);25125258和25125+258;練習中可以提問:每組算式有什么特征和區(qū)別?符合什么運算定律的特征?應用運算定律可以使計算簡便嗎?為什么要這樣算?
3、讓學生進行一題多解的練習,經(jīng)歷解題策略多樣性的過程,優(yōu)化算法,加深學生對乘法結(jié)合律與乘法分配律的理解。
如:計算12588;10189你能用幾種方法?
12588 ①豎式計算; ②125811;③125(80+8);④125(100-12);⑤(100+25)88; ⑥(100+20+5)88等等。
10189 ①豎式計算;②(100+1)89;③101(80+9);101(100-11);101(90-1)等。對不同的解題方法,引導學生進行對比分析,什么時候用乘法結(jié)合律簡便,什么時候用乘法分配律簡便?明確利用乘法結(jié)合律與乘法分配律進行間算的條件是不一樣的。乘法分配律適用于連乘的算式,而乘法分配律一般針對有兩種運算的算式。力爭達到用簡便算法進行計算成為學生的一種自主行為,并能根據(jù)題目的特點,靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
4、多練,針對典型題目多次進行練習。
練習時注意練習量和練習時間的安排。剛開始可以天天練,過段時間以后可以過1-2天練習一次,再到1周練習一次。典型題型可選擇(40+4)25;(404)25;6325+6375;65103-653;5699+56;12588;48102;4899等。對于比較特殊的題目可間斷性練習,對優(yōu)生提出掌握的要求。如3698+72;6825+68+6874,3212525等。
乘法分配律教學反思簡短篇七
《乘法分配律》是在學生學習了加法交換律、加法結(jié)合律及乘法交換律、乘法結(jié)合律的基礎上教學的。乘法分配律也是學習這幾個定律中的難點。故而,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行觀察、比較和歸納,大膽提出自己的猜想并舉例進行驗證……
1、關注學生已有的知識經(jīng)驗。以學生身邊熟悉的情境為教學的切入點,激發(fā)學生主動學習的需要,為學生創(chuàng)設了與生活環(huán)境、知識背景密切相關的感興趣的學習情境,喚醒了學生已有的知識經(jīng)驗,使學生初步感知乘法分配律。
2、展示知識的發(fā)生過程,引導學生積極主動探究。讓學生根據(jù)提供的問題,用不同的方法解決,引導學生觀察,讓學生說明自己發(fā)現(xiàn)的規(guī)律。不僅讓學生獲得了數(shù)學基礎知識和基本技能,而且培養(yǎng)學生主動探究、發(fā)現(xiàn)知識的能力。
3、出示乘法分配律的幾種不同的形式讓學生進行練習。
通過這一系列的教學措施,一節(jié)課下來,總體感覺良好——覺得同學們掌握得還不錯。于是,我布置了讓學生們完成練習冊中《乘法分配律》這一課的習題。
當我批改練習時我傻了眼,學生的作業(yè)大多是中,少部分得良和差(我的作業(yè)批改評定標準),為什么會是這樣的結(jié)果,我進行反思,發(fā)現(xiàn)是講時,例題出示的不多,當時學生都會做了,但是對于熟練掌握這個既是重點又是難的課程的確不是那么簡單的,三種題型放在一起學生就很容易受到干擾,結(jié)果是張冠李戴,錯得讓我涕笑皆非。而為了讓學生把這個知識點掌握牢固,我整整又用了兩節(jié)課。
通過這個知識點的教學,我發(fā)現(xiàn)數(shù)學不多練是不行的。在學生理解之后,必須對其進行及時、有效的練習才可以使知識掌握的更加牢固。
乘法分配律教學反思簡短篇八
多年來,我一直從事小學數(shù)學教學工作,每當教授學生學習運用乘法分配律進行簡便計算時,心里多少都有些發(fā)怵,因為這是一節(jié)比較抽象的概念課,學生極易混淆概念。這節(jié)課是在學生學習了加法交換律、結(jié)合律和乘法交換律、結(jié)合律的基礎上教學的。乘法分配律是學習這幾個定律中的難點,它的教學重點是讓學生感知乘法分配律,知道什么是乘法分配律,難點是理解乘法分配律的意義,并會用乘法分配律進行一些簡便運算。于是,對于乘法分配律的教學,我沒有把重點放在數(shù)學語言的表達上,而是把重點放在讓學生通過多種方法的計算去完整地感知,對所列算式進行仔細觀察,比較和歸納,大膽提出自己的猜想并且舉例進行驗證。
乘法分配律是四年級下冊的教學內(nèi)容,對本課的教學目標我定位在:
1、從學生已有的生活經(jīng)驗出發(fā),通過口算、觀察、類比,歸納、驗證、運用等方法深化和豐富對乘法分配律的認識。
2、在教學中滲透“由特殊到一般,再由一般到特殊”的認識事物的方法,培養(yǎng)學生獨立自主、主動探索、發(fā)現(xiàn)問題、解決問題的能力,提高學生對數(shù)學的應用意識。
新教材的一個鮮明特點就是,不再僅僅給出一些數(shù)值計算的實例,讓學生通過傳統(tǒng)的計算方法,發(fā)現(xiàn)規(guī)律,而是給學生出示一些熟悉的問題情境,讓學生從實際生活出發(fā),體會運算定律的現(xiàn)實生活背景,這樣便于學生依托已有的知識經(jīng)驗,分析比較不同的解決問題的方法,從而引出運算定律。
本節(jié)課也一樣,教材提供了這樣一個主題圖:工人叔叔正在給墻面貼瓷磚呢,橫著一排貼9塊瓷磚,豎著有兩種顏色,其中黃色的貼4排,藍色的貼6排,需要解決的問題是:一共需要貼多少塊瓷磚?學生獨立計算,分別用兩種不同的方法計算:
(1)4×9+6×9=90(塊);
(2)(4+6)×9=90(塊)。
接著我讓學生敘述等號左邊和右邊分別表示什么意思(根據(jù)情境)。目的是讓學生用等值變形對算式的理解。接著讓學生觀察兩個算式,讓學生說出:這兩個算是可以用“=”連接,即:(4+6)×9=4×9+6×9。學生繼續(xù)觀察等于號左邊和右邊的算式的特點,目的是結(jié)合學生熟悉的問題情境,為后面的學習奠定基礎,幫助學生體會運算定律的現(xiàn)實背景。接著設計“懸念”,出示四組題目,把學生引到“兩個算式的結(jié)果相等”的情況中來。先讓學生猜想,然后驗證,再讓學生仿照上式編題,讓每一個學生都不由自主的參與到研究中來。在編題的過程中,大多學生都編得正確,于是學生在參與探究中體驗到了成就感,從而增強了他們學習的自信心和繼續(xù)探究的欲望。接著,請同學們在生活中尋找驗證的方法,分小組交流討論,學生的思維活動一下活躍起來了,紛紛探究其中的奧秘。
用小組討論的方式,更促使學生之間進行思維交流,激發(fā)學生希望獲得的成功的機會。通過實踐、討論,揭示了乘法分配律。再通過用自己喜歡的方式來表述乘法分配律加以內(nèi)化。這樣做,學生學得積極、學得主動、學得快樂。自己動手編題、自己動腦探索,從數(shù)量關系變化的多次類比中悟出規(guī)律。
“給的現(xiàn)成”的少,學生“創(chuàng)造”的就多,這樣學生學會的不僅僅是一條規(guī)律,更重要的是,學生學會了自主、主動參與,學會了進行合作、獨立思考、研究、發(fā)現(xiàn)等,像一個數(shù)學家一樣(這是我的鼓勵語言)!這對于一個十來歲的孩子來說,起到的激勵作用是無比巨大的。而愛思考、多思考、會思考的學習習慣,會讓孩子一生受益??v觀整個教學過程,學生學得輕松,學得主動。
通過這節(jié)課的教學,我感受到:認真鉆研教材,深入挖掘教材中的寶貴資源,會使教材的內(nèi)涵更有深度、廣度,也為培養(yǎng)和發(fā)展學生思維的靈活性,提供了更加廣闊的空間。本節(jié)課的教學較好的貫徹了新課程標準的理念,具體體現(xiàn)在以下幾點:
學生的學習過程應該是學習文本批判、質(zhì)疑和重新發(fā)現(xiàn)的過程,是在具體情境中整個身心投入到學習活動,去經(jīng)歷和體驗知識形成的過程,也是身心多方面需要的實現(xiàn)和發(fā)展的過程。本節(jié)的教學,我從主題圖入手,引出(4+6)×9=4×9+6×9。設計的目的是從解決這個問題的兩種算法中,得到乘法分配律的一個實例。接下來,出示四組題目,把學生引到“兩算式的結(jié)果相等”的情況中來。然后讓學生通過驗證方法的可行性,再讓學生舉例驗證方法的普遍性,最后由學生通過觀察、討論、發(fā)現(xiàn)、驗證、歸納出乘法分配律。整個過程中,我不是把規(guī)律直接呈現(xiàn)給學生,而是讓學生通過自主探索去感悟發(fā)現(xiàn),使主體性得到了充分發(fā)揮。在這個過程中,學生經(jīng)歷了一次嚴密的科學發(fā)現(xiàn)過程:觀察――猜想――驗證――結(jié)論,聯(lián)系生活,解決問題。為學生的可持續(xù)學習奠定了基礎。
在教學過程中,學生的認知水平、思維方式、智力水平、活動能力都是不一樣的。因此,為了使不同層次的學生都能在學習中得到發(fā)展,我在本節(jié)課的教學中通過師生多向互動,特別是通過學生與學生之間的相互啟發(fā)與補充,來培養(yǎng)他們的合作意識,實現(xiàn)對“乘法分配律”這一定律的主動構(gòu)建過程,使學生個人的方法化為共同的學習成果,共同體驗成功的喜悅,生命活力得到發(fā)展的過程。
總之,在本節(jié)課中,雖然新的教學理念有所體現(xiàn),但對于個別學生的參與積極性還沒有充分調(diào)動起來,同學們雖然很投入,都似乎掌握了運算定律的運用,但在課堂練習時還是發(fā)現(xiàn)了一些問題,個別學生仍然出現(xiàn)了概念混淆,如:學生在計算形如a×(b+c)時,就把等于號右邊的算式錯誤的寫成:a×b+c,期間我還提醒大家注意,但實際運用中,很多同學還是忘記用括號里的兩個加數(shù)a和b分別去乘括號外的乘數(shù)c。其實這個問題,也是我上課之前所發(fā)怵的原因,現(xiàn)在看來,對于這一問題,還必須在今后的練習過程中進一步加強理解、運用的訓練,更有待我在今后的教學中不斷地探索改進更好的教學方法,以求進一步提升課堂教學效率。
乘法分配律教學反思簡短篇九
學生對于乘法分配律和結(jié)合律極容易混淆,而且符號容易抄錯。針對這些情況,在教學中應該注意什么呢?
1、乘法分配律的教學既要注重它的外形結(jié)構(gòu)特點,也要同時注重其內(nèi)涵。
教學時我們往往注重等式兩邊的外形特點,即a×(b+c)=a×b+a×c缺乏從乘法意義角度的理解。這時教師可提出為什么兩個算式是相等的?這里不僅從解題的角度理解,如(2+7)×3=+2×3+7×3是相等的,還有從乘法的意義的角度理解,即左邊表示出3個9,右邊也表示出3個9,所以(2+7)×3=2×3+7×3
2、注意區(qū)分乘法結(jié)合律與乘法分配律的特點,多進行對比練習。
乘法結(jié)合律的特征是幾個數(shù)連乘,而乘法分配律特征是兩個數(shù)的和乘以一個數(shù)或兩個積的和。在練習題中(40+4)×25與(40×4)×25這種題學生特別容易出錯。為了更好地掌握,可多進行一些對比練習,如進行題組對比25×(8+4)和25×8×4;25×125×25×4和25×125+25×8;每組算式有什么特征和區(qū)別?符合什么運算定律?應用什么運算定律可以使計算簡便?為什么要這樣算?
3、讓學生進行一題多解的練習,加深對乘法結(jié)合律和乘法分配律的理解
如:125×88;101×89你能有幾種方法?125×88①豎式計算②125×8×11③125×(80+8)④(100+25)×88等等。101×89①豎式計算②(100+1)×89③101×(100-1)④101×(80+9)⑤101×(90-1)等。對于不同解法,引導學生進行對比分析,什么時候用乘法結(jié)合律簡便?什么時候用乘法分配律簡便?力爭達到"用簡便計算法進行計算"成為學生一種自主行為,并能根據(jù)題目的特色靈活選擇適當?shù)乃惴ǖ哪康摹?/p>
4、多練
針對題目多次練習。練習時注意練習量和時間的安排。剛開始可以天天練習,過段時間以后可以一兩天練習一次,再到一周練習一次,典型題型課選擇(40+4)x25;(40x4)x25;63x25+63x75;65x103-65x3;56x99+66;125x8;48x102;48x99等。+
對于比較特殊的題目可以間斷性練習,對優(yōu)生提出掌握的要求,如:36x98+72;68x25+68+68x74;32x125x25等。
乘法分配律教學反思簡短篇十
《乘法分配律》教學反思
乘法分配律是一節(jié)概念課,是在學生已經(jīng)掌握了加法運算定律以及乘法交換律、乘法結(jié)合律的基礎上進行教學的。在本單元運算定律中,是最難理解的,學生最不容易掌握的。本節(jié)課的重點是理解乘法分配律的意義,難點是利用乘法分配律靈活地進行簡便計算。
在課堂上,創(chuàng)設了植樹活動的情境,求一共有多少名同學參加了植樹活動。在課堂中,鼓勵學生獨立思考,能用兩種方法解答出來,然后讓學生對比兩種算法初步讓學生感知乘法分配律的意義,即(4+2)×25=428×25+2×25。
在學生理解了乘法分配律后,運用變式練習加深對乘法分配律意義的理解,讓學生不僅知道兩個數(shù)的和與一個數(shù)相乘可以寫成兩個積相加的形式,還要知道兩個積相加的形式可以寫成兩個數(shù)的和的形式。也就是乘法分配律也可以反著用。最后通過多種形式的練習讓學生深入理解乘法分配律的意義。
通過學習,一些學生已掌握,但也有一些學生的語言敘述不熟練,雖然會背用字母表示的式子,但是不會靈活應用。還有一些學生容易把乘法分配律和乘法結(jié)合律弄混淆。
所以在復習鞏固時,要加強乘法結(jié)合律與乘法分配律的對比,讓學生對這兩個運算定律的結(jié)構(gòu)更清晰。還要加強對乘法分配律意義的理解,通過不同形式的試題的演練,靈活掌握應用運算定律進行簡便計算。
乘法分配律教學反思簡短篇十一
乘法的分配律學生在本冊書中是接觸過的。譬如第42頁的應用題第7題,其中就滲透了乘法的分配律。在數(shù)學一課一練上也有過這種類似的形式。以前在講的時候是從乘法的意義上來幫助學生理解。
一、抓住重點。讓學生理解乘法分配律的意義。
教材按照得出兩道算式,把兩道算式寫成等式,分析兩道算式之間的聯(lián)系,寫出類似的幾組算式。發(fā)現(xiàn)規(guī)律,用語言或其他方式交流規(guī)律,給出用字母式子表示的運算律。這樣的安排,便于學生經(jīng)歷觀察、分析、比較和根據(jù)的過程。能使學生在合作交流的過程中,對簡潔分配律的認識由感性逐步上升到理性。教學用書上寫道:教學的重點和關鍵應是引導學生自主發(fā)現(xiàn)規(guī)律,用語言或其他方式與同伴交流規(guī)律。
在教學時,我是按照如上的步驟進行教學的。可是在我引導學生把算式寫成等式的時候讓學生觀察左右兩邊算式之間的聯(lián)系與區(qū)別之后,學生就根本不知道從何下手。在他們的印象中,聯(lián)系就是根據(jù)乘法的意義來進行聯(lián)系。根本沒有從數(shù)字上面去進行分析??梢哉f,局限在原先的思維中,而沒有跳出來看。而讓學生寫出幾組算式后,觀察分析幾組等式左右兩邊的區(qū)別之后,學生也還是無法用語言來表達這一規(guī)律。場面一時之間很冷,后來我只好直接讓學生用字母來表示,變化為這樣的形式之后,有很多的學生都能夠?qū)懗鰜怼?/p>
我不明白這是為什么,時間我給了,小組也交流了,在小組交流時我已經(jīng)發(fā)現(xiàn)我們班上的學生根本無法發(fā)現(xiàn)其中的規(guī)律,所以也根本無法用語言來進行表達。難道是坡度給得不夠嗎?還是平時的教學中出現(xiàn)了問題。這些都要一一地去分析。
總之,這個關鍵今天并沒有完成好。
二、考慮學生的學習情況,尊重他們的主觀感受。
在引導學生把兩道算式拼成一道等式之后,我讓學生交流,結(jié)果學生給出了兩種(65+45)×5=65×5+45×5。和65×5+45×5=(65+45)×5。我把這兩種方式都板書上黑板上。教材上要求的是第一種,即把(65+45)×5寫在等式的左邊,是為了方便學生對乘法分配律的意義的理解。我認為,從乘法的意義這個角度上來說,意義的理解我們班級可以做到。既然是從意義出發(fā),那么兩種方式其實都是可以的。所以在用字母來表達時,我們班的同學也有了兩種的表達方式:即(a+b)×c=a×c+b×c和a×c+b=(a+b)×c。我都板書在黑板上,只是在規(guī)范的那一道上面畫了個星,告訴學生,乘法分配律的表示一般性采用的是這一條。
三、練習中注意乘法分配律的變式。
乘法分配律的意義是用,是為了計算的簡便。所以,在練習中我注意讓學生說清楚怎么使用的。尤其是想想做做第2題中的74×(20+1)和74×20+74。一定要學生說清楚括號中的1是從哪兒來的。但是簡便的思想滲透得還很不夠。學生在完成想想做做第5題的時候,一大半的學生都沒有采用簡算的方法。哪怕他們在經(jīng)過了第四題的練習時也是一樣。
今天教學了運算律——乘法分配律,對于例題的解決,學生能列出不同的算式,45x5+65x5和(45+65)x5,通過各自的計算得出計算結(jié)果相同,然后把這兩條算式寫成等式45x5+65x5=(45+65)x5,學生還能用自己的語言表述自己對等式的理解:45個5加65個5也就是(45+65)個5,然后又讓學生再仿寫了幾個算式后讓學生觀察等式總結(jié)自己的發(fā)現(xiàn),學生會用字母表示出這一規(guī)律,但用語言表述有困難了。想想做做第1題只有幾個學生把第3小題填錯,其實包括后面的練習中,把axc+bxc改寫成(a+b)xc的正確率要比把(a+b)xc改寫成axc+bxc的正確率高,可能還是學生受以前:45個5加65個5也就是(45+65)個5的理解方法的限制而沒學會用自己的語言表述乘法分配律,從而也沒能真正掌握乘法分配律含義的緣故吧。
想想做做第2題的第3小題74x(21+1)和74x21+74部分學生沒有發(fā)現(xiàn)它們是相等的,我讓認為相等的學生表述理由,學生能把算式改寫成74x21+74x1再運用乘法分配律變形成74x(21+1),學生理解后我補充77x99+77=□(□○□)讓學生填空,完成情況好多了,在拓展練習時補充了axb+b=□(□○□)和axb+b=□(□○□)讓學生進一步真正理解乘法分配律的意義。但學生在完成想想做做第5題時,學生多習慣列式48x3+48x2來計算,卻不能靈活運用所學知識列成(3+2)x48來計算,雖然運用乘法分配律進行簡便計算是下一課的學習內(nèi)容,但我也由此反思出我教學的不足之處,在例題教學時只關注了得出等式,卻忽略了讓學生比較等式兩邊的算式哪邊比較簡便。于是在第4題的算算比比中才補上了這一點。