作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那么教案應(yīng)該怎么制定才合適呢?下面是小編整理的優(yōu)秀教案范文,歡迎閱讀分享,希望對大家有所幫助。
初中數(shù)學正比例函數(shù)教案初中數(shù)學正比例函數(shù)與一次函數(shù)的例題篇一
1、知識與技能
了解函數(shù)的概念,弄清自變量與函數(shù)之間的關(guān)系。
2、過程與方法
經(jīng)歷探索函數(shù)概念的過程,感受函數(shù)的模型思想。
3、情感、態(tài)度與價值觀
培養(yǎng)觀察、交流、分析的思想意識,體會函數(shù)的實際應(yīng)用價值。
1、重點:認識函數(shù)的概念。
2、難點:對函數(shù)中自變量取值范圍的確定。
3、關(guān)鍵:從實際出發(fā),由具體到抽象,建立函數(shù)的模型。
采用“情境──探究”的方法,讓學生從具體的情境中提升函數(shù)的思想方法。
一、回顧交流,聚焦問題
1、變量(p94)中5個思考題。
同學們通過學習“變量”這一節(jié)內(nèi)容,對常量和變量有了一定的認識,請同學們舉出一些現(xiàn)實生活中變化的實例,指出其中的常量與變量。
學生活動思考問題,踴躍發(fā)言。(先歸納出5個思考題的關(guān)系式,再舉例)
教師活動激發(fā)興趣,鼓勵學生聯(lián)想,
(1)指出這個關(guān)系式中的變量和常量。
(2)填寫下表。
高度d/m 0,200,400,600,800,1000
溫度t/℃
(3)觀察兩個變量之間的聯(lián)系,當其中一個變量取定一個值時,另一個變量就______。
3、課本p7“觀察”。
學生活動四人小組互動交流,踴躍發(fā)言
二、討論交流,形成概念
函數(shù)定義
一般地,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。
學生活動辨析理解,如:t=10―這個函數(shù)關(guān)系式中,d是自變量,t是d的函數(shù)等。弄清函數(shù)定義中的問題。
三、繼續(xù)探究,感知輕重
課本p8探究題。
學生活動使用計算器進行探索活動,回答問題,理解函數(shù)概念。(1)y=2x+5,y是x的函數(shù);(2)y=2x+1,y是x的.函數(shù)。
四、范例點擊,提高認知
例1一輛汽車的油箱中現(xiàn)有汽油50l,如果不再加油,那么油箱中的油量y(單位:l)隨行駛里程x(單位:km)的增加而減少,平均耗油量為/km。
(1)寫出表示y與x的函數(shù)關(guān)系的式子。
(2)指出自變量x的取值范圍。
(3)汽車行駛200km時,油箱中還有多少汽油?
教師活動講例,啟發(fā)引導學生共同解決上述例1。
五、隨堂練習,鞏固深化
課本p99練習。
六、課堂總結(jié),發(fā)展?jié)撃?/p>
1、用數(shù)學式子表示函數(shù)的方法叫做表達式法(解析式法),它只是函數(shù)表示法的一種。
2、求函數(shù)的自變量取值范圍的方法。
(1)要使函數(shù)的表達式有意義;(2)對實際問題中的函數(shù)關(guān)系,要使實際問題有意義。
3、把所給自變量的值代入函數(shù)表達式中,就可以求出相應(yīng)的函數(shù)值。
七、布置作業(yè),專題突
課本p106習題14。1第1,2,3,4題。
初中數(shù)學正比例函數(shù)教案初中數(shù)學正比例函數(shù)與一次函數(shù)的例題篇二
從不同方向看
知識與技能目標
1.初步了解作函數(shù)圖象的一般步驟;
2.能熟練作出一次函數(shù)的圖象,掌握一次函數(shù)及其圖象的簡單性質(zhì);
3.初步了解函數(shù)表達式與圖象之間的關(guān)系。
過程與方法目標
經(jīng)歷作圖過程中由一般到特殊方法的轉(zhuǎn)變過程,讓學生體會研究問題的基本方法。
情感與態(tài)度目標
1.在作圖的過程中,體會數(shù)學的美;
2.經(jīng)歷作圖過程,培養(yǎng)學生尊重科學,實事求是的作風。
本節(jié)課是在學習了一次函數(shù)解析式的基礎(chǔ)上,從圖象這個角度對一次函數(shù)進行近一步的研究。教材先介紹了作函數(shù)圖象的一般方法:列表、描點、連線法,再進一步總結(jié)出作一次函數(shù)圖象的特殊方法??兩點連線法。結(jié)合一次函數(shù)的圖象,教材以議一議的方式,引導學生探索函數(shù)解析式與圖象二者間的關(guān)系,為進一步學習圖象及性質(zhì)奠定了基礎(chǔ)。
教學難點:一次函數(shù)及圖象之間的對應(yīng)關(guān)系。
函數(shù)的圖象的概念及作法對學生而言都是較為陌生的。教材從作函數(shù)圖象的一般步驟開始介紹,得出一次函數(shù)圖象是條直線。在此基礎(chǔ)上介紹用兩點連線得一次函數(shù)的圖象,學生就容易接受了。在函數(shù)解析式與圖象二者之間的探討這部分內(nèi)容上,不要作更高要求,學生能回答書中的問題就可以了。教學中盡可能的多作幾個一次函數(shù)的圖象,讓學生直觀感受到一次函數(shù)的圖象是條直線。
一、復習引入
下圖是小紅某天內(nèi)體溫變化情況的曲線圖。你知道這幅圖是怎樣作出來的嗎?把每個時間與其對應(yīng)的體溫分別作為點的橫坐標和縱坐標,在直角坐標系中描出這些點,這樣就可以作出這個圖象。
二、新課講解
把一個函數(shù)的自變量和對應(yīng)的因變量的值分別作為點的橫坐標和縱坐標,在直角坐標系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。
下面我們來作一次函數(shù)y = x+1的圖象
分析:根據(jù)定義,需要在直角坐標系中描出許多點,因此我們應(yīng)先計算這些點的橫、縱坐標,即x與對應(yīng)的y的值。我們可借助一個表格來列出每一對x,y的值。因為一次函數(shù)的自變量x可以取一切實數(shù),所以x一般在0附近取值。
解:列表:
描點:以表中各組對應(yīng)值作為點的坐標,在直角坐標系內(nèi)描出相應(yīng)的點。
連線:把這些點依次連接起來,得到y(tǒng) = x+1圖象(如圖)它是一條直線。
三、做一做
(1)仿照上例,作出一次函數(shù)y= ?2x+5的圖象。
師:回顧剛才的作圖過程,經(jīng)歷了幾個步驟?
生:經(jīng)歷了列表、描點、連線這三個步驟。
師:回答得很好。作函數(shù)圖象的一般步驟是列表、描點、連線。今后我們可以用這個方法去作出更多函數(shù)的圖象。
師:從剛才同學們作出的一次函數(shù)的圖象中我們可以觀察到一次函數(shù)圖象是一條直線。
四、議一議
(3)一次函數(shù)y=kx+b的圖象有什么特點?
例1做出下列函數(shù)的圖象
教師點評:作一次函數(shù)圖象時,通常選取的兩點比較特殊,即為一次函數(shù)和x軸、 y軸的`交點,在列表計算時,分別令x=0,y=0就可計算出這兩點的坐標。正比例函數(shù)當x=0時,y=0,即與x 、 y鈾的交點重合于原點。因此做正比例函數(shù)的圖象時,只需再任取一點,過它與坐標原點作一條直線即可得到正比例函數(shù)的圖象。從而正比例函數(shù)y=kx的圖象是經(jīng)過原點(0,0)的一條直線。
練一練:作出下列函數(shù)的圖象:
(1)y= ?5x+2,???? (2)y= ?x
(3)y=2x?1,(4)y=5x
五、課堂小結(jié)
這節(jié)課我們學習了一次函數(shù)的圖象。一次函數(shù)的圖象是一條直線,正比例函數(shù)的圖象是經(jīng)過原點的一條直線。在作圖時,只需確定直線上兩點的位置,就可得到一次函數(shù)的圖象。一般地,作函數(shù)圖象的三個步驟是:列表、描點、連線。
六、課后練習
隨堂練習習題6.3
本節(jié)課主要介紹作函數(shù)圖象的一般方法,通過對一次函數(shù)圖象的認識,得到作一次函數(shù)及正比例函數(shù)的圖象的特殊方法(兩點確定一條直線)。讓學生能夠迅速找到直線與坐標軸的交點,這是本節(jié)課的難點。數(shù)形結(jié)合,找準這兩個特殊點坐標的特點(x=0或y=0),讓學生理解的記憶才能收到較好的效果。
初中數(shù)學正比例函數(shù)教案初中數(shù)學正比例函數(shù)與一次函數(shù)的例題篇三
(一)知識教學點:
1.使學生了解一元二次方程及整式方程的意義;
(二)能力訓練點:
1.通過一元二次方程的引入,培養(yǎng)學生分析問題和解決問題的能力;
1.教學重點:一元二次方程的意義及一般形式.
2.教學難點:正確識別一般式中的“項”及“系數(shù)”.
(一)明確目標
(二)整體感知
(三)重點、難點的學習及目標完成過程
1.復習提問
(1)什么叫做方程?曾學過哪些方程?
(2)什么叫做一元一次方程?“元”和“次”的含義?
(3)什么叫做分式方程?
問題的提出及解決,為深刻理解一元二次方程的概念做好鋪墊.
整式方程:方程的兩邊都是關(guān)于未知數(shù)的整式,這樣的方程稱為整式方程.
3.練習:指出下列方程,哪些是一元二次方程?
(1)x(5x-2)=x(x+1)+4x 2 ;
(2)7x 2 +6=2x(3x+1);
(3)
(4)6x 2 =x;
(5)2x 2 =5y;
(6)-x 2 =0
(四)總結(jié)、擴展
1.教材p.6 練習2.
2.思考題:
第十二章? 一元二次方程
12.1用公式解一元二次方程
1.整式方程:
4.例1:
2.一元二次方程:
3.一元二次方程的一般形式:
5.練習:
教材p.6a2.
教材p.6b1、2.
1.(1)二次項系數(shù):ab? 一次項系數(shù):c? 常數(shù)項:d.
(2)二次項系數(shù): m-n? 一次項系數(shù):0? 常數(shù)項:m+n.
思考題
(1)不能.如x 3 +2x 2 -4x=5.