又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁 >> 作文 >> 高考數(shù)學(xué)??贾R點文科(3篇)

高考數(shù)學(xué)??贾R點文科(3篇)

格式:DOC 上傳日期:2023-04-07 17:37:58
高考數(shù)學(xué)??贾R點文科(3篇)
時間:2023-04-07 17:37:58     小編:zdfb

人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補(bǔ)記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。

高考數(shù)學(xué)常考知識點文科篇一

利用錯位相減法推導(dǎo)等比數(shù)列的前n項和:

sn=a1+a1q+a1q2+…+a1qn-1,

同乘q得:qsn=a1q+a1q2+a1q3+…+a1qn,

兩式相減得(1-q)sn=a1-a1qn,∴sn=(q≠1).

兩個防范

(1)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗證a1≠0.

(2)在運用等比數(shù)列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.

三種方法

等比數(shù)列的判斷方法有:

(1)定義法:若an+1/an=q(q為非零常數(shù))或an/an-1=q(q為非零常數(shù)且n≥2且n∈n.),則{an}是等比數(shù)列.

(2)中項公式法:在數(shù)列{an}中,an≠0且a=an·an+2(n∈n.),則數(shù)列{an}是等比數(shù)列.

(3)通項公式法:若數(shù)列通項公式可寫成an=c·qn(c,q均是不為0的常數(shù),n∈n.),則{an}是等比數(shù)列.

注:前兩種方法也可用來證明一個數(shù)列為等比數(shù)列.

高考數(shù)學(xué)??贾R點文科篇二

1.函數(shù)的奇偶性

(1)若f(x)是偶函數(shù),那么f(x)=f(-x);

(2)若f(x)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復(fù)合函數(shù)的有關(guān)問題

(1)復(fù)合函數(shù)定義域求法:若已知的定義域為[a,b],其復(fù)合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當(dāng)于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像c1與c2的對稱性,即證明c1上任意點關(guān)于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;

(3)曲線c1:f(x,y)=0,關(guān)于y=x+a(y=-x+a)的對稱曲線c2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線c1:f(x,y)=0關(guān)于點(a,b)的對稱曲線c2方程為:f(2a-x,2b-y)=0;

(5)若函數(shù)y=f(x)對x∈r時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關(guān)于直線x=a對稱;

(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關(guān)于直線x=對稱;

高考數(shù)學(xué)??贾R點文科篇三

函數(shù)的周期性

(1)y=f(x)對x∈r時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數(shù);

(2)若y=f(x)是偶函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);

(3)若y=f(x)奇函數(shù),其圖像又關(guān)于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);

(4)若y=f(x)關(guān)于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數(shù);

(5)y=f(x)的圖象關(guān)于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2的周期函數(shù);

(6)y=f(x)對x∈r時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數(shù);

方程k=f(x)有解k∈d(d為f(x)的值域);

a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈r+);

(2)logan=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負(fù)”記憶;

(4)alogan=n(a>0,a≠1,n>0);

判斷對應(yīng)是否為映射時,抓住兩點:

(1)a中元素必須都有象且;

(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;

能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

對于反函數(shù),應(yīng)掌握以下一些結(jié)論:

(1)定義域上的單調(diào)函數(shù)必有反函數(shù);

(2)奇函數(shù)的反函數(shù)也是奇函數(shù);

(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);

(4)周期函數(shù)不存在反函數(shù);

(5)互為反函數(shù)的兩個函數(shù)具有相同的單調(diào)性;

(6)y=f(x)與y=f-1(x)互為反函數(shù),設(shè)f(x)的定義域為a,值域為b,則有f[f--1(x)]=x(x∈b),f--1[f(x)]=x(x∈a);

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服