人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。范文怎么寫才能發(fā)揮它最大的作用呢?以下是小編為大家收集的優(yōu)秀范文,歡迎大家分享閱讀。
山西初三數(shù)學知識點篇一
(1)有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。
(2)任何數(shù)同零相乘,都得0。
(3)多個有理數(shù)相乘的法則:
①幾個不等于0的數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有奇數(shù)個時,積為負;當負因數(shù)有偶數(shù)個時,積為正.
②幾個數(shù)相乘,有一個因數(shù)為0,積就為0。
(4)方法指引
①運用乘法法則,先確定符號,再把絕對值相乘.
②多個因數(shù)相乘,看0因數(shù)和積的符號當先,這樣做使運算既準確又簡單.
2.有理數(shù)的混合運算
1.有理數(shù)混合運算順序:先算乘方,再算乘除,最后算加減;同級運算,應按從左到右的順序進行計算;如果有括號,要先做括號內(nèi)的運算。
2.進行有理數(shù)的混合運算時,注意各個運算律的運用,使運算過程得到簡化。
有理數(shù)混合運算的四種運算技巧:
(1)轉化法:一是將除法轉化為乘法,二是將乘方轉化為乘法,三是在乘除混合運算中,通常將小數(shù)轉化為分數(shù)進行約分計算.
(2)湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結合為一組求解.
(3)分拆法:先將帶分數(shù)分拆成一個整數(shù)與一個真分數(shù)的和的形式,然后進行計算.
(4)巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便.
3.科學記數(shù)法—表示較大的數(shù)
1.科學記數(shù)法:把一個大于10的數(shù)記成a×10n的形式,其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù),這種記數(shù)法叫做科學記數(shù)法。(科學記數(shù)法形式:a×10n,其中1≤a<10,n為正整數(shù))
2.規(guī)律方法總結
①科學記數(shù)法中a的要求和10的指數(shù)n的表示規(guī)律為關鍵,由于10的指數(shù)比原來的整數(shù)位數(shù)少1;按此規(guī)律,先數(shù)一下原數(shù)的整數(shù)位數(shù),即可求出10的指數(shù)n。
②記數(shù)法要求是大于10的數(shù)可用科學記數(shù)法表示,實質上絕對值大于10的負數(shù)同樣可用此法表示,只是前面多一個負號.
重點知識:
初中數(shù)學第八課:科學計數(shù)法,新初一的來~
4.代數(shù)式求值
(1)代數(shù)式的值:用數(shù)值代替代數(shù)式里的字母,計算后所得的結果叫做代數(shù)式的值。
(2)代數(shù)式的求值:求代數(shù)式的值可以直接代入、計算.如果給出的代數(shù)式可以化簡,要先化簡再求值。
題型簡單總結以下三種:
①已知條件不化簡,所給代數(shù)式化簡;
②已知條件化簡,所給代數(shù)式不化簡;
③已知條件和所給代數(shù)式都要化簡.
5.規(guī)律型:圖形的變化類
首先應找出圖形哪些部分發(fā)生了變化,是按照什么規(guī)律變化的,通過分析找到各部分的變化規(guī)律后直接利用規(guī)律求解。探尋規(guī)律要認真觀察、仔細思考,善用聯(lián)想來解決這類問題。
山西初三數(shù)學知識點篇二
1.數(shù)軸
(1)數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的直線叫做數(shù)軸.
數(shù)軸的三要素:原點,單位長度,正方向。
(2)數(shù)軸上的點:所有的有理數(shù)都可以用數(shù)軸上的點表示,但數(shù)軸上的點不都表示有理數(shù).(一般取右方向為正方向,數(shù)軸上的點對應任意實數(shù),包括無理數(shù).)
(3)用數(shù)軸比較大小:一般來說,當數(shù)軸方向朝右時,右邊的數(shù)總比左邊的數(shù)大。
重點知識:
初中數(shù)學第一課,認識正數(shù)與負數(shù)!新初一的來~
2.相反數(shù)
(1)相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù).
(2)相反數(shù)的意義:掌握相反數(shù)是成對出現(xiàn)的,不能單獨存在,從數(shù)軸上看,除0外,互為相反數(shù)的兩個數(shù),它們分別在原點兩旁且到原點距離相等。
(3)多重符號的化簡:與“+”個數(shù)無關,有奇數(shù)個“﹣”號結果為負,有偶數(shù)個“﹣”號,結果為正。
(4)規(guī)律方法總結:求一個數(shù)的相反數(shù)的方法就是在這個數(shù)的前邊添加“﹣”,如a的相反數(shù)是﹣a,m+n的相反數(shù)是﹣(m+n),這時m+n是一個整體,在整體前面添負號時,要用小括號。
3.絕對值
1.概念:數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值。
①互為相反數(shù)的兩個數(shù)絕對值相等;
②絕對值等于一個正數(shù)的數(shù)有兩個,絕對值等于0的數(shù)有一個,沒有絕對值等于負數(shù)的數(shù).
③有理數(shù)的絕對值都是非負數(shù).
2.如果用字母a表示有理數(shù),則數(shù)a 絕對值要由字母a本身的取值來確定:
①當a是正有理數(shù)時,a的絕對值是它本身a;
②當a是負有理數(shù)時,a的絕對值是它的相反數(shù)﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
重點知識:
初中數(shù)學第二課,有理數(shù)的相關知識!新初一的來~
4.有理數(shù)大小比較
1.有理數(shù)的大小比較
比較有理數(shù)的大小可以利用數(shù)軸,他們從左到有的順序,即從大到小的順序(在數(shù)軸上表示的兩個有理數(shù),右邊的數(shù)總比左邊的數(shù)大);也可以利用數(shù)的性質比較異號兩數(shù)及0的大小,利用絕對值比較兩個負數(shù)的大小。
2.有理數(shù)大小比較的法則:
①正數(shù)都大于0;
②負數(shù)都小于0;
③正數(shù)大于一切負數(shù);
④兩個負數(shù),絕對值大的其值反而小。
規(guī)律方法·有理數(shù)大小比較的三種方法:
(1)法則比較:正數(shù)都大于0,負數(shù)都小于0,正數(shù)大于一切負數(shù).兩個負數(shù)比較大小,絕對值大的反而小.
(2)數(shù)軸比較:在數(shù)軸上右邊的點表示的數(shù)大于左邊的點表示的數(shù).
(3)作差比較:
若a﹣b>0,則a>b;
若a﹣b<0,則a<b;< p="">
若a﹣b=0,則a=b.
5.有理數(shù)的減法
有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。 即:a﹣b=a+(﹣b)
方法指引:
①在進行減法運算時,首先弄清減數(shù)的符號;
②將有理數(shù)轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數(shù)的性質符號(減數(shù)變相反數(shù));
注意:在有理數(shù)減法運算時,被減數(shù)與減數(shù)的位置不能隨意交換;因為減法沒有交換律。
減法法則不能與加法法則類比,0加任何數(shù)都不變,0減任何數(shù)應依法則進行計算。
山西初三數(shù)學知識點篇三
考點1:相似三角形的概念、相似比的意義、畫圖形的放大和縮小
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2:平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解并利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3:相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特征,理解相似三角形的定義。
考點4:相似三角形的判定和性質及其應用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,并能較好地應用。
考點5:三角形的重心
考核要求:知道重心的定義并初步應用。
考點6:向量的有關概念
考點7:向量的加法、減法、實數(shù)與向量相乘、向量的線性運算
考核要求:掌握實數(shù)與向量相乘、向量的線性運算