又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當(dāng)前位置:網(wǎng)站首頁(yè) >> 作文 >> 2023年勾股定理說課稿10分鐘13篇(匯總)

2023年勾股定理說課稿10分鐘13篇(匯總)

格式:DOC 上傳日期:2023-04-09 12:41:36
2023年勾股定理說課稿10分鐘13篇(匯總)
時(shí)間:2023-04-09 12:41:36     小編:zdfb

無論是身處學(xué)校還是步入社會(huì),大家都嘗試過寫作吧,借助寫作也可以提高我們的語(yǔ)言組織能力。那么我們?cè)撊绾螌懸黄^為完美的范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。

勾股定理說課稿10分鐘篇一

(一)、本節(jié)課在教材中的地位作用

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo)

1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺見的勾股數(shù).

2、過程與方法:通過對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。 教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用

教學(xué)難點(diǎn):勾股定理逆定理的證明

本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

(一)復(fù)習(xí)回顧

復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

(二)創(chuàng)設(shè)問題情境

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來,創(chuàng)

造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)

因?yàn)閹缀蝸碓从诂F(xiàn)實(shí)生活,對(duì)初二學(xué)生來說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(四)組織變式訓(xùn)練

本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來。

(五)歸納小結(jié),納入知識(shí)體系

本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并

告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認(rèn)識(shí)問題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

(六)作業(yè)布置

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過程中得到能力的培養(yǎng)。

勾股定理說課稿10分鐘篇二

1. 教材的地位和作用

華師大版八年級(jí)上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用。

因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:

知識(shí)與技能:

1、經(jīng)歷勾股定理的探索過程,體會(huì)數(shù)形結(jié)合思想。

2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。

過程與方法:

1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

2、在觀察、猜想、歸納、驗(yàn)證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。

情感、態(tài)度與價(jià)值觀:

1、通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識(shí)和然所精神。

3、讓學(xué)生通過動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。

由于八年級(jí)的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以

本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。

教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。

要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。

學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。

1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。

牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

2、探索新知

在這里我設(shè)計(jì)了四個(gè)內(nèi)容:

①探索等腰直角三角形三邊的關(guān)系

②邊長(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系

③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)

⑤勾股定理歷史介紹,讓學(xué)生體會(huì)勾股定理的文化價(jià)值。

體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

3、新知運(yùn)用:

①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)

②在直角三角形中,已知∠ b=90° ,ab=6,bc=8,求ac.

③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問怎么做?

④如圖,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

4、小結(jié)本課:

學(xué)完了這節(jié)課,你有什么收獲?

老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來。數(shù)學(xué)來源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識(shí)形成過程,探索問題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長(zhǎng),整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。

對(duì)學(xué)生的啟發(fā)不夠,對(duì)學(xué)生的關(guān)注不夠,學(xué)生對(duì)問題的思考不能及時(shí)想出來,沒有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱栴}設(shè)計(jì)的較難,沒有很好的體現(xiàn)出探究。

預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒有很好的得到發(fā)展。

勾股定理說課稿10分鐘篇三

這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題。

過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

1、創(chuàng)設(shè)情境,提出問題

2、實(shí)驗(yàn)操作,模型構(gòu)建

3、回歸生活,應(yīng)用新知

4、知識(shí)拓展,鞏固深化5。感悟收獲,布置作業(yè)

樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?

設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。

1、等腰直角三角形(數(shù)格子)

2、一般直角三角形(割補(bǔ))

問題一:對(duì)于等腰直角三角形,正方形ⅰ、ⅱ、ⅲ的面積有何關(guān)系?

設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

問題二:對(duì)于一般的直角三角形,正方形ⅰ、ⅱ、ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高。

通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心。

基礎(chǔ)題,情境題,探索題。

設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為x,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

1、課本習(xí)題2。1

2、搜集有關(guān)勾股定理證明的資料。

板書設(shè)計(jì) 探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

李景萍《探索勾股定理》第一課時(shí)說課稿

設(shè)計(jì)說明:

1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平。

勾股定理說課稿10分鐘篇四

勾股定理是九年制義務(wù)教育教科書八年級(jí)下冊(cè)第十七章的內(nèi)容,是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)、心理特征及學(xué)生的實(shí)際情況,可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

(一)知識(shí)與技能

1、體驗(yàn)勾股定理的探索過程,會(huì)運(yùn)用勾股定理解決簡(jiǎn)單的問題。

(二)過程與方法

1、讓學(xué)生經(jīng)歷用面積法探索勾股定理的過程,體會(huì)數(shù)形結(jié)合的思想,滲透觀察、歸納、猜想、驗(yàn)證的數(shù)學(xué)方法,體驗(yàn)從特殊到一般的邏輯推理過程。

(三)情感態(tài)度與價(jià)值觀

1、通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

2、讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿了探索和創(chuàng)造,感受數(shù)學(xué)之美,探究之趣。

重點(diǎn):會(huì)用勾股定理求直角三角形的邊長(zhǎng)

難點(diǎn):勾股定理的探索過程

多媒體課件

6.1第一學(xué)時(shí)

教學(xué)活動(dòng)

活動(dòng)1

【導(dǎo)入】欣賞圖片,了解歷史

2002年在北京召開了第24屆國(guó)際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”.這就是本屆大會(huì)的會(huì)徽的圖案.

(1)你見過這個(gè)圖案嗎?

(2)你聽說過“勾股定理”嗎?

學(xué)生活動(dòng):學(xué)生觀察圖片,發(fā)表見解。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動(dòng)地投入到探索活動(dòng)創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時(shí)為探索勾股定理提供背景材料。

活動(dòng)2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關(guān)系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測(cè)量第三邊的長(zhǎng)度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關(guān)系滿足關(guān)系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關(guān)系滿足關(guān)系:

(2)猜想:直角三角形的三邊關(guān)系為

探究二:如果下圖中小方格的邊長(zhǎng)是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?

思考:每個(gè)圖中正方形的面積與三角形的邊長(zhǎng)有何關(guān)系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語(yǔ)言表述:

如圖,在rtδabc中,c=90°,則:

若bc=a,ac=b,ab=c,則上面的定理可以表示為:

學(xué)生活動(dòng):在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。

活動(dòng)3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的`特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.到目前為止,對(duì)這個(gè)命題的證明方法已有幾百種之多.下面,我們就來看一看我國(guó)數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。

(1)以直角三角形abc的兩條直角邊a、b為邊作兩個(gè)正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關(guān)系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對(duì)邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,

讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。

⑵拼成如圖所示,其等量關(guān)系為:

4s△+s小正=s大正

2ab+(b-a)2=c2

化簡(jiǎn)可證

學(xué)生活動(dòng):學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:通過拼圖活動(dòng),調(diào)動(dòng)學(xué)生思維的積極性,鍛煉學(xué)生的動(dòng)手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),建立初步的空間觀念,發(fā)展形象思維。通過對(duì)定理的證明,讓學(xué)生確信定理的正確性。

活動(dòng)4【練習(xí)】簡(jiǎn)單應(yīng)用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強(qiáng)大的臺(tái)風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點(diǎn)c是以ab為直徑的半圓上一點(diǎn),∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?

學(xué)生活動(dòng):學(xué)生獨(dú)立思考完成

設(shè)計(jì)意圖:教師利用學(xué)生已有的知識(shí)創(chuàng)設(shè)問題情境,有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。

活動(dòng)5【作業(yè)】總結(jié)反思,布置作業(yè)

1、本節(jié)課你有哪些收獲?

2、還有哪些疑問?

3、作業(yè):略

學(xué)生活動(dòng):學(xué)生歸納、總結(jié)談感受

設(shè)計(jì)意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對(duì)課堂整體感受,在輕松愉快的氣氛中體會(huì)收獲的喜悅。

活動(dòng)6【講授】板書設(shè)計(jì)

勾股定理

一、定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,

斜邊為c,那么

二、證明:略

三、應(yīng)用:

活動(dòng)7【作業(yè)】教學(xué)反思

本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識(shí),學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時(shí)還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。

17.1勾股定理

課時(shí)設(shè)計(jì)課堂實(shí)錄

17.1勾股定理

1第一學(xué)時(shí)教學(xué)活動(dòng)活動(dòng)1【導(dǎo)入】欣賞圖片,了解歷史

2002年在北京召開了第24屆國(guó)際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”.這就是本屆大會(huì)的會(huì)徽的圖案.

(1)你見過這個(gè)圖案嗎?

(2)你聽說過“勾股定理”嗎?

學(xué)生活動(dòng):學(xué)生觀察圖片,發(fā)表見解。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出“趙爽弦圖”,為學(xué)生能夠積極主動(dòng)地投入到探索活動(dòng)創(chuàng)設(shè)情境,激發(fā)學(xué)生學(xué)習(xí)熱情,同時(shí)為探索勾股定理提供背景材料。

活動(dòng)2【講授】探索勾股定理

探究一:探索直角三角形三邊的特殊關(guān)系:

(1)畫一直角三角形,使其兩邊滿足下面的條件,測(cè)量第三邊的長(zhǎng)度,完成下表;

直角三角形1

直角邊一a=3

直角邊二b=4

斜邊c=?

猜想三邊關(guān)系滿足關(guān)系:

直角三角形2

直角邊一a=5

直角邊二b=?

斜邊c=13

猜想三邊關(guān)系滿足關(guān)系:

(2)猜想:直角三角形的三邊關(guān)系為

探究二:如果下圖中小方格的邊長(zhǎng)是1,觀察圖形,完成下表,并與同學(xué)交流:你是怎樣得到的?

思考:每個(gè)圖中正方形的面積與三角形的邊長(zhǎng)有何關(guān)系?歸納得出勾股定理。

勾股定理:

直角三角形等于

幾何語(yǔ)言表述:

如圖,在rtδabc中,c=90°,則:

若bc=a,ac=b,ab=c,則上面的定理可以表示為:

學(xué)生活動(dòng):在獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:滲透從特殊到一般的數(shù)學(xué)思想。為學(xué)生提供參與數(shù)學(xué)活動(dòng)的時(shí)間和空間,發(fā)揮學(xué)生的主體作用;培養(yǎng)學(xué)生的類比遷移能力及探索問題的能力,使學(xué)生在相互欣賞、爭(zhēng)辯、互助中得到提高。

活動(dòng)3【講授】證明勾股定理

是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.到目前為止,對(duì)這個(gè)命題的證明方法已有幾百種之多.下面,我們就來看一看我國(guó)數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。

(1)以直角三角形abc的兩條直角邊a、b為邊作兩個(gè)正方形.你能通過剪、拼把它拼成弦圖的樣子嗎?

(2)面積分別怎樣表示?它們有什么關(guān)系呢?

例1:已知,在△abc中,∠c=90°,∠a、∠b、∠c的對(duì)邊

為a、b、c。求證:a2+b2=c2。

分析:

⑴讓學(xué)生準(zhǔn)備多個(gè)三角形模型,最好是有顏色的吹塑紙,

讓學(xué)生拼擺不同的形狀,利用面積相等進(jìn)行證明。

⑵拼成如圖所示,其等量關(guān)系為:

4s△+s小正=s大正

2ab+(b-a)2=c2

化簡(jiǎn)可證

學(xué)生活動(dòng):學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接。

資源準(zhǔn)備:教師演示多媒體課件

設(shè)計(jì)意圖:通過拼圖活動(dòng),調(diào)動(dòng)學(xué)生思維的積極性,鍛煉學(xué)生的動(dòng)手實(shí)踐能力,為學(xué)生提供從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),建立初步的空間觀念,發(fā)展形象思維。通過對(duì)定理的證明,讓學(xué)生確信定理的正確性。

活動(dòng)4【練習(xí)】簡(jiǎn)單應(yīng)用勾股定理解題

1、求下圖中字母所代表的正方形的面積

2、求出下列各圖中x的值。

3、如圖所示,強(qiáng)大的臺(tái)風(fēng)使得一根旗桿在離地面9米處折斷倒下,旗桿頂部落在離旗桿底部12米處。旗桿折斷之前有多高?

4、如圖,點(diǎn)c是以ab為直徑的半圓上一點(diǎn),∠acb=90°,ac=3,bc=4,則圖中陰影部分的面積是多少?

學(xué)生活動(dòng):學(xué)生獨(dú)立思考完成

設(shè)計(jì)意圖:教師利用學(xué)生已有的知識(shí)創(chuàng)設(shè)問題情境,有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行練習(xí),為學(xué)習(xí)勾股定理在實(shí)際生活中的應(yīng)用做好鋪墊。

活動(dòng)5【作業(yè)】總結(jié)反思,布置作業(yè)

1、本節(jié)課你有哪些收獲?

2、還有哪些疑問?

3、作業(yè):略

學(xué)生活動(dòng):學(xué)生歸納、總結(jié)談感受

設(shè)計(jì)意圖:通過小結(jié)能為學(xué)生從能力、情感、態(tài)度等方面關(guān)注學(xué)生對(duì)課堂整體感受,在輕松愉快的氣氛中體會(huì)收獲的喜悅。

活動(dòng)6【講授】板書設(shè)計(jì)

勾股定理

一、定理:如果直角三角形的兩直角邊長(zhǎng)分別為a,b,斜邊為c,那么

二、證明:略

三、應(yīng)用:

活動(dòng)7【作業(yè)】教學(xué)反思

本節(jié)課涉及了大量的有關(guān)勾股定理的背景知識(shí),學(xué)生可以感受到勾股定理所蘊(yùn)含的濃郁的數(shù)學(xué)文化。教學(xué)中應(yīng)聆聽學(xué)生發(fā)言,尊重學(xué)生發(fā)展。積極引導(dǎo)學(xué)生深挖細(xì)究,體現(xiàn)過程方法。教學(xué)中應(yīng)著力激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,也要注重自主探索與合作交流,同時(shí)還要注意數(shù)學(xué)思想方法的滲透,為學(xué)生今后的發(fā)展拓展了空間。

勾股定理說課稿10分鐘篇五

尊敬的各位評(píng)委,各位老師,大家好:

我今天說課的內(nèi)容是《勾股定理的逆定理》第一課時(shí)。下面我將從教材、目標(biāo)、重點(diǎn)難點(diǎn)、教法、教學(xué)流程等幾個(gè)方面向各位專家闡述我對(duì)本節(jié)課的教學(xué)設(shè)想。

一、說教材。

這節(jié)內(nèi)容選自《蘇科版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)八年級(jí)上冊(cè)第三章《勾股定理》中的第二節(jié)。勾股定理的逆定理是幾何中一個(gè)非常重要的定理,它是對(duì)直角三角形的再認(rèn)識(shí),也是判斷一個(gè)三角形是不是直角三角形的一種重要方法。還是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,通過對(duì)勾股定理逆定理的探究,培養(yǎng)學(xué)生的分析思維能力,發(fā)展推理能力。在教學(xué)中滲透類比、轉(zhuǎn)化,從特殊到一般的思想方法。

二、說教學(xué)目標(biāo)。

教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo):

1、知識(shí)與技能:探索并掌握直角三角形判別思想,會(huì)應(yīng)用勾股定理及逆定理解決實(shí)際問題。

2、過程與方法:通過對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

3、情感、態(tài)度、價(jià)值觀:培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系。

三、說教學(xué)重點(diǎn)、難點(diǎn),關(guān)鍵。

本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)及關(guān)鍵。

重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。

關(guān)鍵:動(dòng)手驗(yàn)證,體驗(yàn)勾股定理的逆定理。

四、說教法。

在本節(jié)課中,我設(shè)計(jì)了以下幾種教法學(xué)法:

情景教學(xué)法,啟發(fā)教學(xué)法,分層導(dǎo)學(xué)法。

讓學(xué)生實(shí)踐活動(dòng),動(dòng)手操作,看自己畫的三角形是否為一個(gè)直角三角形。體會(huì)觀察,作出合理的推測(cè)。同時(shí)通過引入,讓學(xué)生了解古代都用這種方法來確定直角的。對(duì)學(xué)生進(jìn)行動(dòng)手能力培養(yǎng)的同時(shí),引導(dǎo)命題的形成過程,自然地得出勾股定理的逆定理。既鍛煉了學(xué)生的實(shí)踐、觀察能力,又滲透了人文和探究精神。

五、說教學(xué)流程。

1、動(dòng)手實(shí)踐,檢測(cè)猜測(cè)。引導(dǎo)學(xué)生分別以3cm,4cm,5cm , 2.5cm,6cm,6.5cm和4cm, 7.5 cm, 8.5 cm , 2cm, 5cm, 6cm為邊畫出兩個(gè)三角形,觀察猜測(cè)三角形的形狀。再引導(dǎo)啟發(fā)學(xué)生從這兩個(gè)活動(dòng)中歸納思考:如果三角形的三邊長(zhǎng)a、b、c滿足,那么此三角形是什么三角形?在整個(gè)過程的活動(dòng)中,盡量給學(xué)生充足的時(shí)間和空間,以平等的身份參與到學(xué)生活動(dòng)中來,幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。

2、探索歸納,證明猜測(cè)。

勾股定理逆定理的證明不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果此時(shí)直接將問題拋給學(xué)生證明,學(xué)生定會(huì)覺得無從下手。我就采用分層導(dǎo)進(jìn)的方法,讓學(xué)生從具體的例子中感受總結(jié),再歸納到中抽象中來。于是我就設(shè)計(jì)了這樣的兩個(gè)步驟:

先補(bǔ)充一道例題:三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么聯(lián)系?你是怎么得到的?請(qǐng)簡(jiǎn)單說明理由。

然后再更改上面的例題,變?yōu)椤鱝bc三邊長(zhǎng)為a、b、c,滿足,與以a、b為直角邊的直角三角形之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

在這個(gè)過程中,要努力引導(dǎo)學(xué)生聯(lián)想到“全等”,進(jìn)而設(shè)法構(gòu)造直角三角形,讓學(xué)生在不斷的嘗試、探究的過程中,總結(jié)出勾股定理的逆定理。有效地突破本節(jié)的難點(diǎn)。同時(shí)提出原命題與逆命題及其關(guān)系。培養(yǎng)良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣對(duì)學(xué)生的可持續(xù)發(fā)展是非常重要的,歸納出定理后,與學(xué)生一起分析定理的題設(shè)與結(jié)論,并與勾股定理進(jìn)行對(duì)比,明白兩定理是互逆定理。

3、嘗試運(yùn)用,熟悉定理。

課本中的例題是讓學(xué)生進(jìn)一步熟練掌握勾股定理的逆定理及其運(yùn)用的步驟。

4、分層訓(xùn)練,能力升級(jí)。有針對(duì)性有層次性地布置練習(xí),及時(shí)反饋教學(xué)效果,查缺被漏,并對(duì)有困難的學(xué)生給予指導(dǎo)。

5、總結(jié)內(nèi)容,強(qiáng)化認(rèn)識(shí)。使學(xué)生再次感悟勾股定理的逆定理,體會(huì)定理的互逆性,加深對(duì)“數(shù)形結(jié)合”的理解,更深刻地理解數(shù)學(xué)思想方法在解題中的地位和作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

6、布置作業(yè)。有代表性地布置不同層次的作業(yè),尊重學(xué)生的個(gè)體差異,滿足多樣化學(xué)習(xí)的需要。

結(jié)束語(yǔ):我的說課完了,非常感謝各位領(lǐng)導(dǎo)和專家給了我這次學(xué)習(xí)、聆聽、參與、鍛煉的機(jī)會(huì)。謝謝大家!

勾股定理說課稿10分鐘篇六

(一)教材所處的地位

這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第十八章第一節(jié)勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

1、知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。

2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

3、解決問題:①通過拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

②在探究過程中,學(xué)會(huì)與人合作并能與他人交流思維的過程和探究的結(jié)果。

4、情感態(tài)度:①通過介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

②在探究過程中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神。

(三)本課的教學(xué)重點(diǎn):探索和證明勾股定理

本課的教學(xué)難點(diǎn):用拼圖的方法證明勾股定理

教法分析:針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實(shí)驗(yàn)操作歸納驗(yàn)證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。

學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

(一)提出問題:

首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,2002年在北京召開了第24屆國(guó)際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的奧運(yùn)會(huì),這就是本屆大會(huì)會(huì)徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。

其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。

勾股定理說課稿10分鐘篇七

尊敬的各位考官:

大家好,我是x號(hào)考生,今天我說課的題目是《勾股定理的逆定理》。

新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

首先來談一談我對(duì)教材的理解。

本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。

接下來談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對(duì)幾何題目具有一定的分析、想象、概括能力,具有對(duì)未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。

根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下教學(xué)目標(biāo):

(一)知識(shí)與技能

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

(二)過程與方法

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態(tài)度與價(jià)值觀

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。

為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。

下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過程的設(shè)計(jì)。

(一)導(dǎo)入新課

課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。

通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。

(二)講解新知

接下來是最重要的新授環(huán)節(jié)。

請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。

勾股定理說課稿10分鐘篇八

今天我說課的課題是《勾股定理》。本課選自九年義務(wù)教育人教版八年級(jí)數(shù)學(xué)下冊(cè)第十八章第一節(jié)的第一課時(shí)。

1、教材分析

本節(jié)課是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,通過20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引入勾股定理,進(jìn)而探索直角三角形三邊的數(shù)量關(guān)系,并應(yīng)用它解決問題。學(xué)好本節(jié)不僅為下節(jié)勾股定理的逆定理打下良好基礎(chǔ),而且為今后學(xué)習(xí)解直角三角形奠定基礎(chǔ),在實(shí)際生活中用途很大。勾股定理是直角三角形的一條非常重要的性質(zhì),是幾何中一個(gè)非常重要的定理,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,將數(shù)與形密切地聯(lián)系起來,它有著豐富的歷史背景,在理論上占有重要的地位。

2、學(xué)情分析

通過前面的學(xué)習(xí),學(xué)生已具備一些平面幾何的知識(shí),能夠進(jìn)行一般的推理和論證,但如何通過拼圖來證明勾股定理,學(xué)生對(duì)這種解決問題的途徑還比較陌生,存在一定的難度,因此,我采用直觀教具、多媒體等手段,讓學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦,化難為易,深入淺出,讓學(xué)生感受學(xué)習(xí)知識(shí)的樂趣。

3、教學(xué)目標(biāo):

根據(jù)八年級(jí)學(xué)生的認(rèn)知水平,依據(jù)新課程標(biāo)準(zhǔn)和教學(xué)大綱的要求,我制定了如下的教學(xué)目標(biāo):

知識(shí)與能力目標(biāo):了解勾股定理的發(fā)現(xiàn)過程,掌握勾股定理的內(nèi)容,會(huì)用面積法證明勾股定理;培養(yǎng)在實(shí)際生活中發(fā)現(xiàn)問題總結(jié)規(guī)律的意識(shí)和能力.

過程與方法目標(biāo):通過創(chuàng)設(shè)情境,導(dǎo)入新課,引導(dǎo)學(xué)生探索勾股定理,并應(yīng)用它解決問題,運(yùn)用了觀察、演示、實(shí)驗(yàn)、操作等方法學(xué)習(xí)新知。

情感態(tài)度價(jià)值觀目標(biāo):感受數(shù)學(xué)文化,激發(fā)學(xué)生學(xué)習(xí)的熱情,體驗(yàn)合作學(xué)習(xí)成功的喜悅,滲透數(shù)形結(jié)合的思想。

4、教學(xué)

通過分析可見,勾股定理是平面幾何的重要定理,有著承上啟下的作用,在今后的生活實(shí)踐中有著廣泛應(yīng)用。因此我確定本課的教學(xué)

重難點(diǎn)為探索和證明勾股定理.

根據(jù)學(xué)生情況,為有效培養(yǎng)學(xué)生能力,在教學(xué)過程中,以創(chuàng)設(shè)問題情境為先導(dǎo),運(yùn)用直觀教具、多媒體等手段,激發(fā)學(xué)生學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生學(xué)習(xí)積極性,并開展以探究活動(dòng)為主的教學(xué)模式,邊設(shè)疑,邊講解,邊操作,邊討論,啟發(fā)學(xué)生提出問題,分析問題,進(jìn)而解決問題,以達(dá)到突出重點(diǎn),攻破難點(diǎn)的目的。

1、教法

“教必有法,而教無定法”,只有方法恰當(dāng),才會(huì)有效。根據(jù)本課內(nèi)容特點(diǎn)和八年級(jí)學(xué)生思維活動(dòng)特點(diǎn),我采用了引導(dǎo)發(fā)現(xiàn)教學(xué)法,合作探究教學(xué)法,逐步滲透教學(xué)法和師生共研相結(jié)合的方法。

2、學(xué)法

“授人以魚,不如授人以漁”,通過設(shè)計(jì)問題序列,引導(dǎo)學(xué)生主動(dòng)探究新知,合作交流,體現(xiàn)學(xué)習(xí)的自主性,從不同層次發(fā)掘不同學(xué)生的不同能力,從而達(dá)到發(fā)展學(xué)生思維能力的目的,發(fā)掘?qū)W生的創(chuàng)新精神。

3、教學(xué)模式

根據(jù)新課標(biāo)要求,要積極倡導(dǎo)自主、合作、探究的學(xué)習(xí)方式,我采用了創(chuàng)設(shè)情境——探究新知——反饋訓(xùn)練的教學(xué)模式,使學(xué)生獲取知識(shí),提高素質(zhì)能力。

(一)創(chuàng)設(shè)情境,引入新課

利用多媒體課件,給學(xué)生出示20xx年國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)面,通過觀察會(huì)徽?qǐng)D案,提出問題:你見過這個(gè)圖案嗎?你聽說過勾股定理嗎?從現(xiàn)實(shí)生活中提出趙爽弦圖,激發(fā)學(xué)生學(xué)習(xí)的熱情和求知欲,同時(shí)為探索勾股定理提供背景材料,進(jìn)而引出課題。

(二)引導(dǎo)學(xué)生,探究新知

1、初步感知定理:這一環(huán)節(jié)選擇教材的圖片,講述畢達(dá)哥拉斯到朋友家做客時(shí)發(fā)現(xiàn)用磚鋪成的地面,其中含有直角三角形三邊的數(shù)量關(guān)系,創(chuàng)設(shè)感知情境,提出問題:現(xiàn)在也請(qǐng)你觀察,看看有什么發(fā)現(xiàn)?教師配合演示,使問題更形象、具體。適當(dāng)補(bǔ)充等腰直角三角形邊長(zhǎng)為1、2時(shí),所形成的規(guī)律,使學(xué)生再次感知發(fā)現(xiàn)的規(guī)律。

2、提出猜想:在活動(dòng)1的基礎(chǔ)上,學(xué)生已發(fā)現(xiàn)一些規(guī)律,進(jìn)一步通過活動(dòng)2進(jìn)行看一看,想一想,做一做,讓學(xué)生感受不只是等腰直角三角形才具有這樣的性質(zhì),使學(xué)生由淺到深,由特殊到一般的提出問題,啟發(fā)學(xué)生得出猜想,直角三角形的兩直角邊的平方和等于斜邊的平方。

3、證明猜想:是不是所有的直角三角形都有這樣的特點(diǎn)呢?這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明.通過活動(dòng)3,充分引導(dǎo)學(xué)生利用直觀教具,進(jìn)行拼圖實(shí)驗(yàn),在動(dòng)手操作中放手讓學(xué)生思考、討論、合作、交流,探究解決問題的多種方法,鼓勵(lì)創(chuàng)新,小組競(jìng)賽,引入競(jìng)爭(zhēng),教師參與討論,與學(xué)生交流,獲取信息,從而有針對(duì)性地引導(dǎo)學(xué)生進(jìn)行證法的探究,使學(xué)生創(chuàng)造性地得出拼圖的多種方法,并使學(xué)生在學(xué)習(xí)的過程中,感受到自我創(chuàng)造的快樂,從而分散了教學(xué)難點(diǎn),發(fā)現(xiàn)了利用面積相等去證明勾股定理的方法。培養(yǎng)了學(xué)生的發(fā)散思維、一題多解和探究數(shù)學(xué)問題的能力。

4、總結(jié)定理:讓學(xué)生自己總結(jié)定理,不完善之處由教師補(bǔ)充。在前面探究活動(dòng)的基礎(chǔ)上,學(xué)生很容易得出直角三角形的三邊數(shù)量關(guān)系即勾股定理,培養(yǎng)了學(xué)生的語(yǔ)言表達(dá)能力和歸納概括能力。

(三)反饋訓(xùn)練,鞏固新知

學(xué)生對(duì)所學(xué)的知識(shí)是否掌握了,達(dá)到了什么程度?為了檢測(cè)學(xué)生對(duì)本課目標(biāo)的達(dá)成情況和加強(qiáng)對(duì)學(xué)生能力的培養(yǎng),設(shè)計(jì)一組有坡度的練習(xí)題:a組動(dòng)腦筋,想一想,是本節(jié)基礎(chǔ)知識(shí)的理解和直接應(yīng)用;b組求陰影部分的面積,建立了新舊知識(shí)的聯(lián)系,培養(yǎng)學(xué)生綜合運(yùn)用知識(shí)的能力。c組議一議,是一道實(shí)際應(yīng)用題型,給學(xué)生施展才智的機(jī)會(huì),讓學(xué)生獨(dú)立思考后,討論交流得出解決問題的方法,增強(qiáng)了數(shù)學(xué)來源于實(shí)踐,反過來又作用于實(shí)踐的應(yīng)用意識(shí),達(dá)到了學(xué)以致用的目的。

(四)歸納小結(jié),深化新知

本節(jié)課你有哪些收獲?你最感興趣的地方是什么?你想進(jìn)一步研究的的問題是什么?通過小結(jié),使學(xué)生進(jìn)一步明確掌握教學(xué)目標(biāo),使知識(shí)成為體系。

(五)布置作業(yè),拓展新知

讓學(xué)生收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.使本節(jié)知識(shí)得到拓展、延伸,培養(yǎng)了學(xué)生能力和思維的深刻性,讓學(xué)生感受數(shù)學(xué)深厚的文化底蘊(yùn)。

(六)板書設(shè)計(jì),明確新知

本節(jié)課的板書設(shè)計(jì)分為三塊:一塊是拼圖方法,一塊是勾股定理;一塊是例題解析。它突出了重點(diǎn),層次清楚,便于學(xué)生掌握,為獲得知識(shí)服務(wù)。

勾股定理說課稿10分鐘篇九

(一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)教學(xué)目標(biāo):

知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題.過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.二、教法與學(xué)法分析:

學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.三、教學(xué)過程設(shè)計(jì)

1.創(chuàng)設(shè)情境,提出問題

2.實(shí)驗(yàn)操作,模型構(gòu)建

3.回歸生活,應(yīng)用新知

4.知識(shí)拓展,鞏固深化

5.感悟收獲,布置作業(yè)

(一)創(chuàng)設(shè)情境提出問題

(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)

設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.(2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?

設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))

問題一:對(duì)于等腰直角三角形,正方形ⅰ、ⅱ、ⅲ的面積有何關(guān)系?

設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.問題二:對(duì)于一般的直角三角形,正方形ⅰ、ⅱ、ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

基礎(chǔ)題,情境題,探索題.設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為x,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.五、感悟收獲布置作業(yè):

這節(jié)課你的收獲是什么?

作業(yè):

1、課本習(xí)題

2、搜集有關(guān)勾股定理證明的資料.板書設(shè)計(jì)探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設(shè)計(jì)說明:

1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平.

勾股定理說課稿10分鐘篇十

本課時(shí)是北師大版八年級(jí)(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對(duì)勾股定理的應(yīng)用之一。 勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

1。知識(shí)和方法目標(biāo):通過對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。

2。過程與方法目標(biāo):通過對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的。 3。情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。 教學(xué)重點(diǎn):勾股定理的應(yīng)用。 教學(xué)難點(diǎn):勾股定理的正確使用。 教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

1。以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。 2。切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。 3。通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 一?;仡檰枺汗垂啥ɡ淼膬?nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。 二。新授課例1。如圖所示,有一個(gè)圓柱,它的高ab等于4厘米,底面周長(zhǎng)等于20厘米,在圓柱下底面的a點(diǎn)有一只螞蟻,它想吃到上底面與a點(diǎn)相對(duì)的c點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本p57圖14。2。1)

①學(xué)生取出自制圓柱,,嘗試從a點(diǎn)到c點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短? ②如圖,將圓柱側(cè)面剪開展成一個(gè)長(zhǎng)方形,從a點(diǎn)到c點(diǎn)的最短路線是什么?你畫得對(duì)嗎? ③螞蟻從a點(diǎn)出發(fā),想吃到c點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開成長(zhǎng)方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從a點(diǎn)往上爬到b點(diǎn)后順著直徑爬向c點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2。(課本p58圖14。2。3) 思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于ch,點(diǎn)d在離廠門中線0。8米處,且cd⊥ab, 與地面交于h,尋找出rt△ocd,運(yùn)用勾股定理求出cd= = =0。6,ch=0。6+2。3=2。9>2。5可見卡車能順利通過 。詳細(xì)解題過程看課本 引導(dǎo)學(xué)生完成p58做一做。 三。課堂小練 1。課本p58練習(xí)第1,2題。 2。探究: 一門框的尺寸如圖所示,一塊長(zhǎng)3米,寬2。2米的薄木板是否能從門框內(nèi)通過?為什么?

四。小結(jié)直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問題,達(dá)到事倍功半的效果。

勾股定理說課稿10分鐘篇十一

勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國(guó)與熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

教學(xué)難點(diǎn):勾股定理的證明。

教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓同學(xué)們主動(dòng)參與學(xué)習(xí)全過程。

2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

(一)創(chuàng)設(shè)情境 以古引新

1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

(二)初步感知 理解教材

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難 討論歸納

1、教師設(shè)疑或?qū)W生提疑。如:如何證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)同學(xué)們的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí) 強(qiáng)化提高

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié) 練習(xí)反饋

引導(dǎo)同學(xué)們對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),同學(xué)們獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說課稿10分鐘篇十二

(一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)教學(xué)目標(biāo):

知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題.

過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

1.創(chuàng)設(shè)情境,提出問題

2.實(shí)驗(yàn)操作,模型構(gòu)建

3.回歸生活,應(yīng)用新知

4.知識(shí)拓展,鞏固深化

5.感悟收獲,布置作業(yè)

(一)創(chuàng)設(shè)情境提出問題

(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)

設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

(2)某樓房三樓失火,消防隊(duì)員趕來救火,了解到每層樓高3米,消防隊(duì)員取來6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?

設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

二、實(shí)驗(yàn)操作模型構(gòu)建

1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))

問題一:對(duì)于等腰直角三角形,正方形ⅰ、ⅱ、ⅲ的面積有何關(guān)系?

設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

問題二:對(duì)于一般的直角三角形,正方形ⅰ、ⅱ、ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無形中得到提高.

通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

三.回歸生活應(yīng)用新知

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

基礎(chǔ)題,情境題,探索題.

設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為x,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

這節(jié)課你的收獲是什么?

作業(yè):

1、課本習(xí)題2.1

2、搜集有關(guān)勾股定理證明的資料.

板書設(shè)計(jì)探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設(shè)計(jì)說明:

1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來的思維水平、表達(dá)水平.

勾股定理說課稿10分鐘篇十三

尊敬的各位領(lǐng)導(dǎo),各位老師:

大家好!今天我說課的內(nèi)容是初中八年級(jí)數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時(shí)),下面我分五部分來匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì),這就是"教材分析"、"學(xué)情分析"、"教法選擇"、"學(xué)法指導(dǎo)"、"教學(xué)過程"。

(一) 教材地位和作用

勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

(二)教學(xué)目標(biāo)

根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):

1、知識(shí)與技能方面

了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡(jiǎn)單應(yīng)用。

2、過程與方法方面

經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡(jiǎn)單的推理的意識(shí),和語(yǔ)言表達(dá)的能力,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

3、情感態(tài)度與價(jià)值觀方面

(1)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

(2) 通過研究一系列富有探 究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。

(三)教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):掌握勾股定理,并能用它來解決一些簡(jiǎn)單的問題。

教學(xué)難點(diǎn):勾股定理的證明。

我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對(duì)幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確 歸納所學(xué)知識(shí),通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨(dú)的說教方式,希望教師設(shè)計(jì)便于他們進(jìn)行觀察的幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會(huì);更希望教師滿足他 們的創(chuàng)造愿望。

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計(jì)" 觀察——討論—?dú)w納"的教學(xué)方法,意在幫助學(xué)生通過自己動(dòng)手實(shí)驗(yàn)和直觀情景觀察,從實(shí)踐中獲取知識(shí),并通過討論來深化對(duì)知識(shí)的理解。本節(jié)課采用了多媒體輔 助教學(xué),能夠直觀、生動(dòng)的反應(yīng)圖形,增加課堂的容量,同時(shí)有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。

為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn),這節(jié)課主要采用觀察分析,自主探索與合作交流的學(xué)習(xí)方 法,使學(xué)生積極參與教學(xué)過程。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會(huì)觀察、類比、分析、從特殊到一般等數(shù)學(xué)思 想。借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。

根據(jù)《新課標(biāo)》中"要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)中"的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計(jì)的:

(一)創(chuàng)設(shè)情境,引入新課

一個(gè)設(shè)計(jì)合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實(shí)際問題。我設(shè)計(jì)了以下題目:

星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢(shì)險(xiǎn)峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰a處向地面b處架了一條纜車線路,已知山底端c處與地面b處相距1200米,

∠acb=90° ,你能用所學(xué)知識(shí)算出纜車路線ab長(zhǎng)應(yīng)為多少?

答案是不能的。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。

設(shè)計(jì)意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。 教師引導(dǎo)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對(duì)于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。

緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):

1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。

2、掌握勾股定理的內(nèi)容,并會(huì)簡(jiǎn)單應(yīng)用。

(二)勾股定理的探索

1、猜想結(jié)論

(1)探究一:等腰直角三角形三邊關(guān)系。

由課本64頁(yè)畢達(dá)哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

在此過程中,給學(xué)生充分的時(shí)間、觀察、比較、交流,最后通過活動(dòng)讓學(xué)生用語(yǔ)言概括總結(jié)。

提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?

(2、)探究二:一般的直角三角形三邊關(guān)系。

在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

設(shè) 計(jì)意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀察。教師在多媒體課件上直觀地演示。通過學(xué)生自己探索、討論,由學(xué) 生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計(jì)算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。

2、證明猜想

目前世界上證明該勾股定理的方法有很多種,而我國(guó)古代數(shù)學(xué)家利用拼接、割補(bǔ)圖形,計(jì)算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進(jìn)行證 明。學(xué)生分組活動(dòng),根據(jù)圖形的面積進(jìn)行計(jì)算,推導(dǎo)出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

設(shè)計(jì)意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補(bǔ)圖形,計(jì)算面積的證明方法,使學(xué)生認(rèn)識(shí)到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

3、簡(jiǎn)要介紹勾股定理命名的由來

我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中、我國(guó)稱這個(gè)結(jié)論為"勾股定理",西方畢達(dá)哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

設(shè)計(jì)意圖:對(duì)比以上事實(shí)對(duì)學(xué)生進(jìn)行愛國(guó)主義教育,激勵(lì)他們奮發(fā)向上。

(三)勾股定理的應(yīng)用

1、利用勾股定理,解決引入中的問題。體會(huì)數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

2、教學(xué)例1:課本66頁(yè)探究1

師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.

木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.

因?yàn)閷?duì)角線ac的長(zhǎng)度最大,所以只能試試斜著 能否通過.

從而將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.

提示:

(1)在圖中構(gòu)造出一個(gè)直角三角形。(連接ac)

(2)知道直角△abc的那條邊?

(3)知道直角三角形兩條邊長(zhǎng)求第三邊用什么方法呢?

設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出rt△abc,并求出斜邊a c的長(zhǎng)。本例意在滲透實(shí)際問題和勾股定理的知識(shí)聯(lián)系。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗(yàn)成功,從而增加學(xué)習(xí)興趣。

(四)、課堂練習(xí) 習(xí)題18、1 1、5。 學(xué)生板演,師生點(diǎn)評(píng)。

設(shè)計(jì)意圖:通過練習(xí)使學(xué)生加深對(duì)勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進(jìn)一步讓學(xué)生理解勾股定理的運(yùn)用。

(五)課堂小結(jié)

對(duì)學(xué)生提問:"通過這節(jié)課的學(xué)習(xí)有什么收獲?"

學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會(huì),并請(qǐng)個(gè)別學(xué)生發(fā)言。

設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識(shí)脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。

(六)達(dá)標(biāo)訓(xùn)練與反饋

設(shè)計(jì)意圖:必做題較為簡(jiǎn)單,要求全體學(xué)生完成;選作題有一點(diǎn)的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。

以上內(nèi)容,我僅從"說教材","說學(xué)情"、"說教法"、"說學(xué)法"、"說教學(xué)過程"五個(gè)方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià), 探索過程中,會(huì)為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境。希望得到各位專家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!

全文閱讀已結(jié)束,如果需要下載本文請(qǐng)點(diǎn)擊

下載此文檔
a.付費(fèi)復(fù)制
付費(fèi)獲得該文章復(fù)制權(quán)限
特價(jià):5.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里
b.包月復(fù)制
付費(fèi)后30天內(nèi)不限量復(fù)制
特價(jià):9.99元 10元
微信掃碼支付
已付款請(qǐng)點(diǎn)這里 聯(lián)系客服