又大又粗又硬又爽又黄毛片,国产精品亚洲第一区在线观看,国产男同GAYA片大全,一二三四视频社区5在线高清

當前位置:網(wǎng)站首頁 >> 作文 >> 等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎優(yōu)秀(十三篇)

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎優(yōu)秀(十三篇)

格式:DOC 上傳日期:2024-06-02 02:02:33
等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎優(yōu)秀(十三篇)
時間:2024-06-02 02:02:33     小編:一葉知秋

范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。寫范文的時候需要注意什么呢?有哪些格式需要注意呢?下面是小編幫大家整理的優(yōu)質(zhì)范文,僅供參考,大家一起來看看吧。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇一

教學目標

a、知識目標:

掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。

b、能力目標:

(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。

(2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。

(3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。

c、情感目標:(數(shù)學文化價值)

(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。

(2)通過公式的運用,樹立學生"大眾教學"的思想意識。

(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的心理體驗,產(chǎn)生熱愛數(shù)學的情感。

教學重點:等差數(shù)列前n項和的公式。

教學難點:等差數(shù)列前n項和的公式的靈活運用。

教學方法:啟發(fā)、討論、引導(dǎo)式。

教具:現(xiàn)代教育多媒體技術(shù)。

教學過程

一、創(chuàng)設(shè)情景,導(dǎo)入新課。

師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。

例1,計算:1+2+3+4+5+6+7+8+9+10.

這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。

生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。

生2:可設(shè)s=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 s=10+9+8+7+6+5+4+3+2+1。

上面兩式相加得2s=11+10+......+11=10×11=110

10個

所以我們得到s=55,

即1+2+3+4+5+6+7+8+9+10=55

師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學的方法相類似。

理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?

生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq.

二、教授新課(嘗試推導(dǎo))

師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和sn計算公式呢?根據(jù)上面的例子同學們自己完成推導(dǎo),并請一位學生板演。

生4:sn=a1+a2+......an-1+an也可寫成

sn=an+an-1+......a2+a1

兩式相加得2sn=(a1+an)+(a2+an-1)+......(an+a1)

n個

=n(a1+an)

所以sn=

#formatimgid_0#

(i)

師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n-1)d代入公式(1)得

sn=na1+

#formatimgid_1#

d(ii) 上面(i)、(ii)兩個式子稱為等差數(shù)列的前n項和公式。公式(i)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n-1)d,sn=

#formatimgid_2#

=na1+

#formatimgid_3#

d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(i)和(ii)的一些應(yīng)用。

三、公式的應(yīng)用(通過實例演練,形成技能)。

1、直接代公式(讓學生迅速熟悉公式,即用基本量觀點認識公式)例2、計算:

(1)1+2+3+......+n

(2)1+3+5+......+(2n-1)

(3)2+4+6+......+2n

(4)1-2+3-4+5-6+......+(2n-1)-2n

請同學們先完成(1)-(3),并請一位同學回答。

生5:直接利用等差數(shù)列求和公式(i),得

(1)1+2+3+......+n=

#formatimgid_4#

(2)1+3+5+......+(2n-1)=

#formatimgid_5#

(3)2+4+6+......+2n=

#formatimgid_6#

=n(n+1)

師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學生發(fā)言解答。

生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以

原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

=n2-n(n+1)=-n

生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為-1,故可得另一解法:

原式=-1-1-......-1=-n

n個

師:很好!在解題時我們應(yīng)仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。

例3、(1)數(shù)列{an}是公差d=-2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,s10。

生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

又∵d=-2,∴a1=6

∴s12=12 a1+66×(-2)=-60

生9:(2)由a1+a2+a3=12,a1+d=4

a8+a9+a10=75,a1+8d=25

解得a1=1,d=3 ∴s10=10a1+

#formatimgid_7#

=145

師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學們根據(jù)例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。

師:(繼續(xù)引導(dǎo)學生,將第(2)小題改編)

①數(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且sn=145,求a1,d,n

②若此題不求a1,d而只求s10時,是否一定非來求得a1,d不可呢?引導(dǎo)學生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。

2、用整體觀點認識sn公式。

例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求s16;(2)已知a6=20,求s11。(教師啟發(fā)學生解)

師:來看第(1)小題,寫出的計算公式s16=

#formatimgid_8#

=8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?

生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以s16=8×18=144。

師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學問題的體現(xiàn)。

師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式sn的運用一一剖析,引導(dǎo)學生觀察當d≠0時,sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識sn公式后,這留給同學們課外繼續(xù)思考。

最后請大家課外思考sn公式(1)的逆命題:

已知數(shù)列{an}的前n項和為sn,若對于所有自然數(shù)n,都有sn=

#formatimgid_9#

。數(shù)列{an}是否為等差數(shù)列,并說明理由。

四、小結(jié)與作業(yè)。

師:接下來請同學們一起來小結(jié)本節(jié)課所講的內(nèi)容。

生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項和公式。

2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對sn公式的運用。

生12:1、運用sn公式要注意此等差數(shù)列的項數(shù)n的值。

2、具體用sn公式時,要根據(jù)已知靈活選擇公式(i)或(ii),掌握知三求二的解題通法。

3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。

師:通過以上幾例,說明在解題中靈活應(yīng)用所學性質(zhì),要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學習。

本節(jié)所滲透的數(shù)學方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。

數(shù)學思想:類比思想、整體思想、方程思想、函數(shù)思想等。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇二

1、教學目標:

(1)理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;

(2)培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

(3)通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

2、教學重點和難點:

(1)等差數(shù)列的概念。

(2)等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。用不完全歸納法推導(dǎo)等差數(shù)列的通項公式。

采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

本節(jié)課的教學過程由:(一)復(fù)習引入;(二)新課探究;(三)應(yīng)用例解;(四)反饋練習;(五)歸納小結(jié);(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

(一)復(fù)習引入:

1、全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是cm)分別是21,22,23,24,25。

2、某劇場前10排的座位數(shù)分別是:38,40,42,44,46,48,50,52,54,56。

3、某長跑運動員7天里每天的訓練量(單位:m)是:7500,8000,8500,9000,9500,10000,10500。

共同特點:從第2項起,每一項與前一項的差都等于同一個常數(shù)。

(二) 新課探究。

1、給出等差數(shù)列的概念:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

(1)“從第二項起”滿足條件;

(2)公差d一定是由后項減前項所得;

(3)公差可以是正數(shù)、負數(shù),也可以是0。

2、推導(dǎo)等差數(shù)列的通項公式:若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:— =d 即: = +d;– =d 即: = +d = +2d;– =d 即: = +d = +3d……進而歸納出等差數(shù)列的通項公式:= +(n—1)d

此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:– =d;– =d;– =d……– =d。

將這(n—1)個等式左右兩邊分別相加,就可以得到 – = (n—1) d即 = +(n—1) d

當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。

接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n—1)×2 , 即 =2n—1 以此來鞏固等差數(shù)列通項公式運用

(三)應(yīng)用舉例。

這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

例1 :

(1)求等差數(shù)列8,5,2,…的第20項;

(2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式。

例2:

在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。

在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固。

例3:

梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

(四)反饋練習。

1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

2、若數(shù)列{ } 是等差數(shù)列,若 = k ,(k為常數(shù))試證明:數(shù)列{ }是等差數(shù)列。

此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

(五)歸納小結(jié) 。(由學生總結(jié)這節(jié)課的收獲)

1、等差數(shù)列的概念及數(shù)學表達式。

強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

2、等差數(shù)列的通項公式 = +(n—1) d會知三求一

(六) 布置作業(yè)。

1、必做題:課本p114 習題3。2第2,6 題。

2、選做題:已知等差數(shù)列{ }的首項 = —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇三

本節(jié)課講述的是人教版高一數(shù)學(上)§3.2等差數(shù)列(第一課時)的內(nèi)容。

一、教材分析

1、教材的地位和作用:

數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

2、教學目標

根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入"數(shù)學建模"的思想方法并能運用。

b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

3、教學重點和難點

根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

①等差數(shù)列的概念。

②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對"數(shù)學建模"的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

二、學情分析對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

二、教法分析

針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

三、學法指導(dǎo)在引導(dǎo)分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學程序

本節(jié)課的教學過程由(一)復(fù)習引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

(一)復(fù)習引入:

1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ .(n﹡;解析式)

通過練習1復(fù)習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

(二) 新課探究

1、由引入自然的給出等差數(shù)列的概念:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

① "從第二項起"滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)"同一個常數(shù)" );

在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

an+1-an=d (n≥1)

同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

1. 9 ,8,7,6,5,4,……;√

2. 0.70,0.71,0.72,0.73,0.74……;√

3. 0,0,0,0,0,0,……; √

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

2、第二個重點部分為等差數(shù)列的通項公式

在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論的通項公式。通過總結(jié)的通項公式由學生猜想的通項公式,進而歸納的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

若一等差數(shù)列{ }的首項是a1,公差是d,

則據(jù)其定義可得:

a2 - a1 =d 即: a2 =a1 +d

a3 – a2 =d 即: a3 =a2 +d = a1 +2d

a4 – a3 =d 即: a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

進而歸納出等差數(shù)列的通項公式:

1(1)

此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

a2 – a1 =d

a3 – a2 =d

a4 – a3 =d

……

an – an-1=d

將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) 即 an= a1+(n-1) (1)

當n=1時,(1)也成立,

所以對一切n∈n﹡,上面的公式都成立

因此它就是等差數(shù)列{}的通項公式。

在迭加法的證明過程中,我采用啟發(fā)式教學方法。

利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到"注重方法,凸現(xiàn)思想" 的教學要求

接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,即an=2n-1 以此來鞏固等差數(shù)列通項公式運用

同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

(三)應(yīng)用舉例

這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

(2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d.

在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固

例3 是一個實際建模問題

建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階"等高"使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學生將該實際問題轉(zhuǎn)化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)

設(shè)置此題的目的:1.加強同學們對應(yīng)用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了"從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的"數(shù)學建模"的數(shù)學思想方法

(四)反饋練習

1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

目的:對學生加強建模思想訓練。

3、若數(shù)例{} 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{}是等差數(shù)列

此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

(五)歸納小結(jié)(由學生總結(jié)這節(jié)課的收獲)1.等差數(shù)列的概念及數(shù)學表達式。

強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

2.等差數(shù)列的通項公式 an= a1+(n-1) 會知三求一

3.用"數(shù)學建模"思想方法解決實際問題

(六)布置作業(yè)

必做題:課本p114 習題3.2第2,6 題

選做題:已知等差數(shù)列{an}的首項a1= -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

五、板書設(shè)計

在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,"從第二項起"及"同一常數(shù)"等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

§3.2 等差數(shù)列

一、等差數(shù)列

1、定義

注:"從第二項起"及"同一常數(shù)"用紅色粉筆標注

二、等差數(shù)列的通項公式

例題與練習

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇四

數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入數(shù)學建模的思想方法并能運用。

b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

①等差數(shù)列的概念。

②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對數(shù)學建模的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

三、學法指導(dǎo)在引導(dǎo)分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

本節(jié)課的教學過程由(一)復(fù)習引入(二)新課探究(三)應(yīng)用例解(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______ 。(n﹡;解析式)

通過練習1復(fù)習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

2. 小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為: 100,98,96,94,92 ①

3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為 5,10,15,20,25 ②

通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

1、由引入自然的給出等差數(shù)列的概念:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

① 從第二項起滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)同一個常數(shù)

在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

an+1-an=d (n1)

同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

1. 9 ,8,7,6,5,4, d=-1

2. 0.70,0.71,0.72,0.73,0.74 d=0.01

3. 0,0,0,0,0,0, d=0

4. 1,2,3,2,3,4,

5. 1,0,1,0,1,

其中第一個數(shù)列公差0, 第二個數(shù)列公差0,第三個數(shù)列公差=0

由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

2、第二個重點部分為等差數(shù)列的通項公式

在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項 ,公差d,由學生研究分組討論a4 的.通項公式。通過總結(jié)a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

若一等差數(shù)列{an }的首項是a1,公差是d,

則據(jù)其定義可得:

a2 - a1 =d 即: a2 =a1 +d

a3 a2 =d 即: a3 =a2 +d = a1 +2d

a4 a3 =d 即: a4 =a3 +d = a1 +3d

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇五

等差數(shù)列為人教版必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的性質(zhì)與應(yīng)用等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

對于我校的高中學生,知識經(jīng)驗比較貧乏,雖然他們的智力發(fā)展已到了形式運演階段,但并不具備教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

【知識與技能】能夠準確的說出等差數(shù)列的特點;能夠推導(dǎo)出等差數(shù)列的通項公式,并可以利用等差數(shù)列解決些簡單的實際問題。

【過程與方法】在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,鍛煉知識、方法遷移能力;通過階梯性練習,提高分析問題和解決問題的能力。

【情感態(tài)度價值觀】通過對等差數(shù)列的研究,激發(fā)主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

【重點】等差數(shù)列的概念,等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

【難點】等差數(shù)列通項公式的推導(dǎo),用“數(shù)學建?!钡乃枷虢鉀Q實際問題。

數(shù)學教學是師生之間交往活動共同發(fā)展的課程,結(jié)合本節(jié)課的特點,我采取指導(dǎo)自主學習方法,并在引導(dǎo)分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

(一)復(fù)習導(dǎo)入

類比函數(shù),復(fù)習提問數(shù)列的函數(shù)意義,即數(shù)列可看作是定義域為正整數(shù)對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的解析式。

設(shè)計意圖:通過復(fù)習,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備,將課堂設(shè)置成為階梯型教學,消除學生的畏難情緒。

(二)新課教學

教師創(chuàng)設(shè)具體情境,從具體事例中抽象出數(shù)學概念。

1.小明目前會100個單詞,他打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92

2.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25

通過練習1和2引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

接下來由學生嘗試總結(jié)歸納等差數(shù)列的定義:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

(三)深化概念

教師請學生深度剖析等差數(shù)列的概念,進一步強調(diào)

①“從第二項起”滿足條件;

②公差d一定是由后項減前項所得;

③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)”);

在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:an+1-an=d(n≥1)

同時為配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。其中第一個數(shù)列公差小于0,第二個數(shù)列公差大于0,第三個數(shù)列公差等于0。由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0。

(四)歸納通項公式

在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。由學生研究,分組討論上述四個等差數(shù)列的通項公式。通過總結(jié)對比找出共同點猜想一般等差數(shù)列的通向公式應(yīng)為怎樣的形式整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

猜想等差數(shù)列的通項公式:an=a1+(n-1)d

此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法---迭加法:

在迭加法的證明過程中,我采用啟發(fā)式教學方法。

利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求

接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2,

即an=2n-1,以此來鞏固等差數(shù)列通項公式的運用。

同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

(五)應(yīng)用舉例

這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。

先讓學生求等差數(shù)列的第20項、30項等。向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

此外還可以聯(lián)系實際建模問題,如建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學生將該實際問題轉(zhuǎn)化為數(shù)學模型-----等差數(shù)列。

設(shè)置此題的目的:

1.加強同學們對應(yīng)用題的綜合分析能力;

2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;

3.再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建模”的數(shù)學思想方法。

(六)小結(jié)作業(yè)

小結(jié):(由學生總結(jié)這節(jié)課的收獲)

1.等差數(shù)列的概念及數(shù)學表達式。

強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)。

2.等差數(shù)列的通項公式:an=a1+(n-1),會知三求一。

3.用“數(shù)學建?!彼枷敕椒ń鉀Q實際問題

作業(yè):現(xiàn)實生活中還有哪些等差數(shù)列的實際應(yīng)用呢?根據(jù)實際問題自己編寫兩道等差數(shù)列的題目并進行求解。

激發(fā)學生學習數(shù)學的興趣,以及認識到學習數(shù)學的重要性,將數(shù)學知識應(yīng)用于實際問題的解決不僅回顧加深了本堂課的教學內(nèi)容,開闊學生思維,還鍛煉了學生學以致用、觀察分析問題解決問題的能力。

在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇六

讓學生了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列;正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)以及指定的項。

學生在第一節(jié)課《數(shù)列》的基礎(chǔ)上已經(jīng)初次接觸“等差數(shù)列”的形式了,對于什么數(shù)列是等差數(shù)列已經(jīng)明確,本節(jié)課需要學生具體明確的掌握等差數(shù)列的概念,通項公式以及基本應(yīng)用。

等差數(shù)列的概念以及通項公式是重點;概念和通項公式的應(yīng)用時難點。

4。1第一學時教學活動

活動1【講授】等差數(shù)列

ⅰ、問題情境

上兩節(jié)課我們學習了數(shù)列的定義及給出數(shù)列和表示的數(shù)列的幾種方法——列舉法、通項公式、遞推公式、圖象法。這些方法從不同的角度反映數(shù)列的特點。下面我們看這樣一些例子。

課本p41頁的4個例子:

①0,5,10,15,20,25,…

②48,53,58,63

③18,15.5,13,10.5,8,5.5

④10072,10144,10216,10288,10366

觀察:請仔細觀察一下,看看以上四個數(shù)列有什么共同特征?

共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(shù)(即等差);(誤:每相鄰兩項的差相等——應(yīng)指明作差的順序是后項減前項)

ⅱ、認知新課

1、等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。

⑴公差d一定是由后項減前項所得,而不能用前項減后項來求;

⑵對于數(shù)列,若后一項減去前一項為d(與n無關(guān)的數(shù)或字母),n≥2,n∈n,則此數(shù)列是等差數(shù)列,d為公差。

思考:數(shù)列①、②、③、④的通項公式存在嗎?如果存在,分別是什么?

2、等差數(shù)列的通項公式:“兩個”

等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得……

由此歸納等差數(shù)列的通項公式。

故:已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項。

[范例探究]

例1 ⑴求等差數(shù)列8,5,2…的第20項

⑵ —401是不是等差數(shù)列—5,—9,—13…的項?如果是,是第幾項?

例2已知數(shù)列{}的通項公式,其中、是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?

分析:由等差數(shù)列的定義,要判定是不是等差數(shù)列,只要看(n≥2)是不是一個與n無關(guān)的常數(shù)。

注:①若p=0,則{}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,…

②若p≠0,則{}是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差,直線在y軸上的截距為q。

③數(shù)列{}為等差數(shù)列的充要條件是其通項等于pn+q(p、q是常數(shù)),稱其為第3通項公式。

④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個通項公式中的一個。

ⅲ、課堂練習

課本p45練習1、2、3、4

[補充練習]

1、(1)求等差數(shù)列3,7,11,……的第4項與第10項。

(2)求等差數(shù)列10,8,6,……的第20項。

(3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由。

(4)-20是不是等差數(shù)列0,-3,-7,……的項?如果是,是第幾項?如果不是,說明理由。

答案:

(1)分析:根據(jù)所給數(shù)列的前3項求得首項和公差,寫出該數(shù)列的通項公式,從而求出所求項。

評述:關(guān)鍵是求出通項公式。

(2)評述:要注意解題步驟的規(guī)范性與準確性。

(3)分析:要想判斷一數(shù)是否為某一數(shù)列的其中一項,則關(guān)鍵是要看是否存在一正整數(shù)n值,使得等于這一數(shù)。

(4)解略

ⅳ、課時小結(jié)

通過本節(jié)學習,首先要理解與掌握等差數(shù)列的定義及數(shù)學表達式;其次,要會推導(dǎo)等差數(shù)列的通項公式;并掌握其基本應(yīng)用。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇七

尊敬的各位專家、評委:

上午好!

我叫鄭永鋒,來自安慶師范學院。今天我說課的課題是人教a版必修5第二章第三節(jié)《等差數(shù)列的前n項和》。

我嘗試利用新課標的理念來指導(dǎo)教學,對于本節(jié)課,我將以“教什么,怎么教,為什么這樣教”為思路,從教材分析、目標分析、教法學法分析、教學過程分析和評價分析五個方面來談?wù)勎覍滩牡睦斫夂徒虒W的設(shè)計,敬請各位專家、評委批評指正。

數(shù)列是刻畫離散現(xiàn)象的函數(shù),是一種重要的屬性模型。人們往往通過離散現(xiàn)象認識連續(xù)現(xiàn)象,因此就有必要研究數(shù)列。

高中數(shù)列研究的主要對象是等差、等比兩個基本數(shù)列。本節(jié)課的教學內(nèi)容是等差數(shù)列前n項和公式的推導(dǎo)及其簡單應(yīng)用。

在推導(dǎo)等差數(shù)列前n項和公式的過程中,采用了:

1從特殊到一般的研究方法;

2倒敘相加求和。不僅得出來等差數(shù)列前n項和公式,而且對以后推導(dǎo)等比數(shù)列前n項和公式有一定的啟發(fā),也是一種常用的數(shù)學思想方法。

等差數(shù)列的前n項和是學習極限、微積分的基礎(chǔ),與數(shù)學課程的其他內(nèi)容(函數(shù)、三角、不等式等)有著密切的聯(lián)系。

(一)、教學目標

1、知識與技能

掌握等差數(shù)列的前n項和公式,能較熟練應(yīng)用等差數(shù)列的前n項和公式求和。

2、過程與方法

經(jīng)歷公式的推導(dǎo)過程,體會數(shù)形結(jié)合的數(shù)學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思。

3、情感、態(tài)度與價值觀

獲得發(fā)現(xiàn)的成就感,逐步養(yǎng)成科學嚴謹?shù)膶W習態(tài)度,提高代數(shù)推理的能力。

1、重點:等差數(shù)列的前n項和公式。

2、難點:獲得等差數(shù)列的前n項和公式推導(dǎo)的思路。

教學過程分為問題呈現(xiàn)階段、探索與發(fā)現(xiàn)階段、應(yīng)用知識階段。

探索與發(fā)現(xiàn)公式推導(dǎo)的思路是教學的重點。如果直接介紹“倒敘相加”求和,無疑就像波利亞所說的“帽子里跳出來的兔子”。所以在教學中采用以問題驅(qū)動、層層鋪墊,從特殊到一般啟發(fā)學生獲得公式的推導(dǎo)方法。

應(yīng)用公式也是教學的重點。為了讓學生較熟練掌握公式,可采用設(shè)計變式題的教學手段,通過“選擇公式”,“變用公式”,“知三求二”三個層次來促進學生新的認知結(jié)構(gòu)的形成。

建構(gòu)主義學習理論認為,學習是學生積極主動地建構(gòu)知識的過程,學習應(yīng)該與學生熟悉的背景相聯(lián)系。在教學中,讓學生在問題情境中,經(jīng)歷知識的形成和發(fā)展,通過觀察、操作、歸納、探索、交流、反思參與學習,認識和理解數(shù)學知識,學會學習,發(fā)展能力。

1、問題呈現(xiàn)階段

泰姬陵坐落于印度古都阿格,是世界七大奇跡之一。傳說陵寢中有一個三角形圖案,以相同大小的圓寶石鑲飾而成共有100層。你知道這個圖案一共花了多少寶石嗎?

設(shè)計意圖:

(1)、源于歷史,富有人文氣息。

(2)、承上啟下,探討高斯算法。

2、探究發(fā)現(xiàn)階段

(1)、學生敘述高斯首尾配對的方法(學生對高斯的算法是熟悉的,知道采用首尾配對的方法來求和,但是他們對這種方法的認識可能處于模仿、記憶的階段。)

(2)、為了促進學生對這種算法的進一步理解,設(shè)計了下面的問題。

問題1:圖案中,第1層到第21層共有多少顆寶石?(這是奇數(shù)個項和的問題,不能簡單模仿偶數(shù)個項求和的方法,需要把中間項11看成是首、尾兩項1和21的等差中項。

通過前后比較得出認識:高斯“首尾配對”的算法還得分奇數(shù)、偶數(shù)個項的情況求和。

(3)、進而提出有無簡單的方法。

借助幾何圖形的直觀性,引導(dǎo)學生使用熟悉的幾何方法:把“全等三角形”倒置,與原圖補成平行四邊形。

獲得算法:s21=

設(shè)計意圖:

幾何直觀能啟迪思路,幫助理解,因此,借助幾何直觀學習和理解數(shù)學,是數(shù)學學習中的重要方面,只有做到了直觀上的理解,才是真正的理解。因此在教學中,要鼓勵學生借助幾何直觀進行思考,揭示研究對象的性質(zhì)和關(guān)系,從而滲透了數(shù)形結(jié)合的數(shù)學思想。

問題2:求1到n的正整數(shù)之和。即sn=1+2+3+…+n

∵sn=n+(n—1)+(n—2)+…+1

∴2sn=(n+1)+(n+1)+…。+(n+1)

sn=(從求確定的前n個正整數(shù)之和到求一般項數(shù)的前n個正整數(shù)之和,旨在讓學生體驗“倒敘相加求和”這一算法的合理性,從心理上完成對“首尾配對求和”算法的改進)

由于前面的鋪墊,學生容易得出如下過程:

∵sn=an+an—1+an—2+…a1,

∴sn=。

圖形直觀

等差數(shù)列的性質(zhì)(如果m+n=p+q,那么am+an=ap+aq。)

設(shè)計意圖:

一言以蔽之,數(shù)學教學應(yīng)努力做到:以簡馭繁,平實近人,退樸歸真,循循善誘,引人入勝。

3、公式應(yīng)用階段

(1)、選用公式

公式1sn=;

公式2sn=na1+。

(2)、變用公式

(3)、知三求二

某長跑運動員7天里每天的訓練量如下7500m,8000m,8500m,9000m,9500m,10000m,10500m。這位長跑運動員7天共跑了多少米?(本例提供了許多數(shù)據(jù)信息,學生可以從首項、尾項、項數(shù)出發(fā),使用公式1,也可以從首項、公差、項數(shù)出發(fā),使用公式2求和。達到學生熟悉公式的要素與結(jié)構(gòu)的教學目的。

通過兩種方法的比較,引導(dǎo)學生應(yīng)該根據(jù)信息選擇適當?shù)墓剑员阌谟嬎?。?/p>

等差數(shù)列—10,—6,—2,2,…的前多少項和為54?(本例已知首項,前n項和、并且可以求出公差,利用公式2求項數(shù)。

事實上,在兩個求和公式中包含四個元素,從方程的角度,知三必能求余一。)

變式練習:在等差數(shù)列{an}中,a1=20,an=54,sn=999,求n。

知三求二:

在等差數(shù)列{an}中,已知d=20,n=37,sn=629,求a1及an。(本例是使用等差數(shù)列的求和公式和通項公式求未知元。

事實上,在求和公式、通項公式中共有首項、公差、項數(shù)、尾項、前n項和五個元素,如果已知其中三個,連列方程組,就可以求出其余兩個。)

4、當堂訓練,鞏固深化。

通過學生的主體性參與,使學生深刻體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識的再次深化。

采用課后習題1,2,3。

5、小結(jié)歸納,回顧反思。

小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。

(1)、課堂小結(jié)

①、回顧從特殊到一般的研究方法;

②、體會等差數(shù)列的基本元素的表示方法,倒敘相加的算法,以及數(shù)形結(jié)合的數(shù)學思想。

③、掌握等差數(shù)列的兩個球和公式及簡單應(yīng)用

(2)、反思

我設(shè)計了三個問題

①、通過本節(jié)課的學習,你學到了哪些知識?

②、通過本節(jié)課的學習,你最大的體驗是什么?

③、通過本節(jié)課的學習,你掌握了哪些技能?

作業(yè)分為必做題和選做題,必做題是對本節(jié)課學生知識水平的反饋,選做題是對本節(jié)課內(nèi)容的延伸與連貫,強調(diào)學以致用。通過作業(yè)設(shè)置,使不同層次的學生都可以獲得成功的喜悅,看到自己的潛能,從而激發(fā)學生飽滿的學習興趣,促進學生的自主發(fā)展、合作探究的學習氛圍的形成。

我設(shè)計了以下作業(yè):

1、必做題:課本p118,練習1,2,3;

習題3。3第2題(3,4)。

2、選做題:

在等差數(shù)列中,

(1)、已知a2+a5+a12+a15=36,求是s16。

(2)、已知a6=20,求s11。

(三)、板書設(shè)計

板書要基本體現(xiàn)課堂的內(nèi)容和方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構(gòu)及其相互關(guān)系:能指導(dǎo)教師的教學進程、引導(dǎo)學生探索知識;通過使用幻燈片輔助板書,節(jié)省課堂時間,使課堂進程更加連貫。

學生學習的結(jié)果評價固然重要,但是更重要的是學生學習的過程評價。我采用了及時點評、延時點評與學生互評相結(jié)合,全面考查學生在知識、思想、能力等方面的發(fā)展情況,在質(zhì)疑探究的過程中,評價學生是否有積極的情感態(tài)度和頑強的理性精神,在概念反思過程中評價學生的歸納猜想能力是否得到發(fā)展,通過鞏固練習考查學生對本節(jié)是否有一個完整的集訓,并進行及時的調(diào)整和補充。

以上就是我對本節(jié)課的理解和設(shè)計,敬請各位專家、評委批評指正。

謝謝!

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇八

各位領(lǐng)導(dǎo)、各位專家:

你們好!我說課的課題是《等差數(shù)列》。我將從以下五個方面來分析本課題:

1、教材的地位和作用:

《等差數(shù)列》是北師大版新課標教材《數(shù)學》必修5第一章第二節(jié)的內(nèi)容,是學生在學習了數(shù)列的有關(guān)概念和學習了給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列知識的進一步深入和拓展。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。另一方面,等差數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分,有著廣泛的實際應(yīng)用。

2、教學目標:

a、在知識上,要求學生理解并掌握等差數(shù)列的概念,了解等差數(shù)列通項公式的推導(dǎo)及思想,初步引入“數(shù)學建?!钡乃枷敕椒ú⒛芎唵芜\用。

b、在能力上,注重培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會了函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移到研究數(shù)列上來,培養(yǎng)學生的知識、方法遷移能力,提高學生分析和解決問題的能力。

c、在情感上,通過對等差數(shù)列的研究,讓學生體驗從特殊到一般,又到特殊的認識事物的規(guī)律,培養(yǎng)學生勇于創(chuàng)新的科學精神。

3、教學重、難點:

重點:

①等差數(shù)列的概念。

②等差數(shù)列通項公式的推導(dǎo)過程及應(yīng)用。

難點:

①等差數(shù)列的通項公式的推導(dǎo)。

②用數(shù)學思想解決實際問題。

對于高二的學生,知識經(jīng)驗已經(jīng)比較豐富,他們的智力發(fā)展已經(jīng)到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力。

教法:本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過提問題激發(fā)學生的求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析并解決問題。

學法:在引導(dǎo)學生分析問題時,留出學生思考的余地,讓學生去聯(lián)想、探索,鼓勵學生大膽質(zhì)疑,圍繞等差數(shù)列這個中心各抒己見,把需要解決的問題弄清楚。

我把本節(jié)課的教學過程分為六個環(huán)節(jié):

(一)創(chuàng)設(shè)情境,提出問題

問題情境(通過多媒體給出現(xiàn)實生活中的四個特殊的數(shù)列)

1、我們經(jīng)常這樣數(shù)數(shù),從0開始,每隔5數(shù)一次,可以得到數(shù)列:0,5,10,15,20,①

2、2000年,在澳大利亞悉尼舉行的奧運會上,女子舉重被正式列為比賽項目,該項目共設(shè)置了7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):48,53,58,63②

3、水庫的管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位為18m,自然放水每天水位降低2.5,最低降至5那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m):18,15、5,13,10、5,8,5、5③

4、按照我國現(xiàn)行儲蓄制度(單利),某人按活期存入10000元錢,5年內(nèi)各年末的本利和(單位:元)組成了數(shù)列:10072,10144,10216,10288,10360④

教師活動:引導(dǎo)學生觀察以上數(shù)列,提出問題:

問題1、請說出這四個數(shù)列的后面一項是多少?

問題2、說出這四個數(shù)列有什么共同特點?

(二)新課探究

學生活動:對于問題1,學生容易給出答案。而問題2對學生來說較為抽象,不易回答準確。

教師活動:為引導(dǎo)學生得出等差數(shù)列的概念,我對學生的表述進行歸類,引導(dǎo)學生得出關(guān)鍵詞“從第2項起”、“每一項與前一項的差”、“同一個常數(shù)”告訴他們把滿足這些條件的數(shù)列叫做等差數(shù)列,之后由他們集體給出等差數(shù)列的概念以及其數(shù)學表達式。

同時為了配合概念的理解,用多媒體給出三個數(shù)列,由學生進行判斷:

判斷下面的數(shù)列是否為等差數(shù)列,是等差數(shù)列的找出公差

1、1,2,3,4,5,6,;(√,d = 1)

2、0、9,0、7,0、5,0、3,0、1;(√,d = —0、2)

3、0,0,0,0,0,0,、;(√,d = 0)

其中第一個數(shù)列公差>0,第二個數(shù)列公差

由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

在理解等差數(shù)列概念的基礎(chǔ)上提出:

問題3、如果等差數(shù)列的首項是a1,公差是d,如何用首項和公差將an表示出來?

教師活動:為引導(dǎo)學生得出通項公式,我采用討論式的教學方法。讓學生自由分組討論,在學生討論時引導(dǎo)他們得出a10=a1+9d,a40=a1+39d,進而猜想an=a1+(n—1)d。

整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

此時指出:這就是不完全歸納法,這種導(dǎo)出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,進而提出:

問題4、怎么樣嚴謹?shù)那蟪龅炔顢?shù)列的通項公式?

利用等差數(shù)列概念啟發(fā)學生寫出n—1個等式。對照已歸納出的通項公式啟發(fā)學生想出將n—1個等式相加,最后證出通項公式。在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想”的教學要求。

接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2,即an=2n—1、以此來鞏固等差數(shù)列通項公式運用,同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n的一次函數(shù),其圖像是均勻排開的無窮多個孤立點。這一題用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

(三)應(yīng)用舉例

這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式的理解及運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a

1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

例1(1)求等差數(shù)列8,5,2,的第20項;第30項;第40項(2)—401是不是等差數(shù)列—5,—9,—13,的項?如果是,是第幾項?

在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

例2在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d、在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固。

例3是一個實際建模問題

某出租車的計價標準為1、2元/km,起步價為10元,即最初的4km(不含4千米)計費10元。如果某人乘坐該市的出租車去往14km處的目的地,且一路暢通,等候時間為0,需要支付多少車費?

這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意“出租車的計價標準為1、2元/km”使學生想到在每個整公里時出租車的車費構(gòu)成等差數(shù)列,引導(dǎo)學生將該實際問題轉(zhuǎn)化為數(shù)學模型。

設(shè)置此題的目的:加強學生對“數(shù)學建?!彼枷氲恼J識。

(四)反饋練習

1、小節(jié)后的練習中的第1題

目的:使學生熟悉通項公式,對學生進行基本技能訓練。

2、小節(jié)后的練習中的第2題

目的:對學生加強建模思想訓練。

3、課本p38例3(備用)

已知數(shù)列{an}的通項公式anpnq,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?它與函數(shù)y=px+q兩者圖象間有什么關(guān)系?

目的:此題是對學生進行數(shù)列問題提高訓練,學習如何用定義解決數(shù)列問題同時強化了等差數(shù)列的概念;進而讓學生從數(shù)(結(jié)構(gòu)特征)與形(圖象)上進一步認識到等差數(shù)列的通項公式與一次函數(shù)之間的關(guān)系

(五)歸納小結(jié)

(由學生總結(jié)這節(jié)課的收獲)

1、等差數(shù)列的概念及數(shù)學表達式

強調(diào)關(guān)鍵詞:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

2、等差數(shù)列的通項公式an=a1+(n—1)d會知三求一

3、用“數(shù)學建模”思想方法解決實際問題

(六)布置作業(yè)

必做題:課本p40習題2、2 a組第1、3、4題

選做題:課本p40習題2、2 b組第1題

課后實踐:

將學生分成三個小組,要求他們分別找出現(xiàn)實生活中公差大于、小于、等于0的典型的等差數(shù)列的模型,在下節(jié)課派代表為我們講解所選的等差數(shù)列。

目的是讓學生主動參與具體的教學實踐,進一步鞏固知識,激發(fā)興趣。

五、結(jié)束

本節(jié)課我根據(jù)高二學生的心理特征及認知規(guī)律,通過一系列問題貫穿教學始終,符合新課標要求的“以教師為主導(dǎo),學生為主體”的思想,并最終達到預(yù)期的教學效果。

我的說課完畢,謝謝!

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇九

各位評委老師:

大家好!

我說課的課題是等差數(shù)列的前n項和,本節(jié)內(nèi)容選自江蘇教育出版社中職數(shù)學第二冊第11章第2節(jié),下面我將從說教材、說教法學法、說教學過程、說板書設(shè)計以及說教學反思幾個方面對本節(jié)課加以說明。

1、教材的地位和作用

中職數(shù)學是中等職業(yè)學校各類專業(yè)學生必修的主要文化基礎(chǔ)課,學好這門課程對提高學生數(shù)學素養(yǎng)具有十分重要的意義。數(shù)列這一章是中職數(shù)學的重要內(nèi)容之一。它不僅是函數(shù)知識的延伸,而且還有著非常廣泛的實際應(yīng)用;同時數(shù)列還是培養(yǎng)學生數(shù)學思維能力的良好題材。

《等差數(shù)列的前n項和》是本章的第二節(jié),它為后繼學習提供了知識基礎(chǔ),對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

《等差數(shù)列》作為《數(shù)列》這一章中兩個最重要的數(shù)列之一,具有承上啟下的作用,它的研究和解決集中體現(xiàn)了研究《數(shù)列》問題的思想和方法。學習《等差數(shù)列的前n項和》對提高學生分析、猜想、概括、歸納的能力有著重要的作用。

2、教學目標根據(jù)教學大綱的要求和教學內(nèi)容的結(jié)構(gòu)特征,并結(jié)合學生學習的實際情況,我將本節(jié)課的教學目標確定為以下三個方面

知識目標:掌握等差數(shù)列的前n項和公式

能力目標:1、培養(yǎng)學生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法。

2、提高學生分析問題和解決問題的能力

情感目標:1、培養(yǎng)學生主動探索的精神和良好的學習習慣

2、讓學生在問題中感受學習的樂趣;

3、教學重點和難點。根據(jù)本節(jié)課的內(nèi)容以及學生已掌握的知識情況我將

教學重點確定為:等差數(shù)列的前n項和公式及應(yīng)用

教學難點確定為:應(yīng)用等差數(shù)列解決有關(guān)問題

教法教學有法但教無定法,教學方法要與學生學習的實際情況相結(jié)合。

中職學生的生源質(zhì)量逐年下降,大部分中職生基礎(chǔ)薄弱、理解接受能力較差,大多數(shù)學生不愛學習,不會學習。學生認為數(shù)學難,枯燥理解不了。對數(shù)學學習提不起興趣,因此在教學中我注重激發(fā)學生學習的興趣。本節(jié)課通過具體的實例引入,采用了問題、類比、發(fā)現(xiàn)、歸納的探究式教學方法。引導(dǎo)學生積極主動的去學習。在課堂教學中強調(diào)以學生為主體,注重精講多練。同時也注重學生非智力因素的培養(yǎng),增強學生的自信心和成就感。為學習營造寬松和諧的氛圍。另外在教學中使用多媒體教學手段等,提高教學質(zhì)量和教學效果。

學法我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導(dǎo)。倡導(dǎo)學生主動參與、樂于探究,培養(yǎng)學生發(fā)現(xiàn)問題、分析問題和解決問題的能力。根據(jù)學生的認知水平,我設(shè)計了①創(chuàng)設(shè)情境—引入問題②分析歸納—解決問題③例題研究—運用新知④分組訓練—鞏固新知⑤總結(jié)歸納—提高認識⑥課后作業(yè)-自主探究六個層次的學法,它們環(huán)環(huán)相扣,層層深入,從而順利完成教學目標。

接下來,我再具體談一談這堂課的教學過程。

(一)創(chuàng)設(shè)情境——引入問題教學設(shè)想

我經(jīng)常在想:長期以來,我們的學生為什么對數(shù)學不感興趣,甚至害怕數(shù)學,其中一個重要因素就是數(shù)學離學生的生活實際太遠了。事實上,數(shù)學學習應(yīng)該與學生的生活融合起來,從學生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學、探究數(shù)學、認識并掌握數(shù)學。

由生活中的實例一招聘信息引入:a公司月薪20xx元;b公司第一個月800元,以后逐月遞加200元。你愿意到哪家公司上班?為什么?在a、b公司一年各共領(lǐng)多少錢?五年呢?以此來激發(fā)學生的學習興趣。再給學生講數(shù)學家高斯的故事

1+2+3+…+100=

同學們,如果你是小高斯,你會怎么向老師解釋算法呢?

(二)分析歸納——解決問題教學設(shè)想

由高斯的解題過程:

s= 1+2+3+…+100

s= 100+99+98+…+1

2s=(100+1)×100

s=(100+1)100/2=5050

讓學生在在教師的啟發(fā)引導(dǎo)下,由被動地聽講變?yōu)橹鲃訁⑴c,敢于發(fā)表自己獨特的見解,并學會傾聽、尊重他人的意見。教師引導(dǎo)學生概括總結(jié)出本課新的知識點。

1、等差數(shù)列前n項求和公式

類似m+n=s+t am+an=as+at m,n,s,t∈n+

等差求和

倒排相加

另有

即(2)——類似梯形面積公式便于記憶

進而讓學生解決課前提出的問題

一年在a公司12×20xx

在b公司

800+900+1000+…1900

五年在a公司20xx×12×5

在b公司

800+900+1000+…+6700

——讓學生利用剛學的知識解決當前的問題,讓學生明白學以致用。

(三)例題研究——運用新知教學設(shè)想

通過例題,使學生加深對知識的理解,從而達到掌握、運用知識的效果

例1、(1)求正奇數(shù)前100項之和;

(2)求第101個正奇數(shù)到第150個正奇數(shù)之和;

(3)等差數(shù)列的通項公式為an=100-3n,求其前65項之和;

(4)在等差數(shù)列{an}中,已知a1=3,,求s10

例2、某長跑運動員7天每天的訓練量(單位:m)分別是7500,8000,8500,9000,9500,10000,10500,他在7天內(nèi)共跑了多少米?

例3、設(shè)等差數(shù)列{an}的公差d=,,前n項之和sn=。求a1及n

課堂上讓學生用兩種公式解題,有利于提高思維的靈活性,通過板演調(diào)動學生的積極性,也掌握本節(jié)課的重點和難點。

(四)分組訓練—鞏固新知

教學設(shè)想,例題過后,我特地設(shè)計了一組檢測題,

1、等差數(shù)列求和公式sn=

2、等差數(shù)列{an}中,(1)a1=2,d=-1則sn=

3、2c+4c+6c+…+2nc=

4、一堆圓木,每層總比上一層多一根,頂層4根,最底層21根,這堆木料有多少根?

5、一只掛鐘,遇整點就敲響,鐘響的次數(shù)是該點的時間數(shù),從1點到12點共響幾次?

通過游戲比賽的形式,活躍課堂氣氛,提高學生的學習興趣。來鞏固新知識。

(五)總結(jié)歸納——提高認識教學設(shè)想

讓學生通過所學內(nèi)容的小結(jié),對知識的發(fā)生發(fā)展有一個清晰的線索,把課堂所學知識構(gòu)建起新的知識體系。同時養(yǎng)成良好的學習習慣。

(六)課后作業(yè)自主探究

教學設(shè)想

學生經(jīng)過以上五個環(huán)節(jié)的學習,已經(jīng)初步掌握了等差數(shù)列的前n項的求和,并解決了一些實際問題。

根據(jù)學生在課堂上知識掌握的情況有針對性布置課后作業(yè)。提高學生應(yīng)用知識的能力。

我將這節(jié)課的板書設(shè)計為三列,一列為本節(jié)課的基本知識點,一列為例題,一列為講解。條理清晰,一目了然。

我認為板書設(shè)計在課堂教學中也很重要,好的板書就是一份微型教案,向?qū)W生展現(xiàn)了所學知識的框架,突出重點難點,清晰直觀地將授課內(nèi)容傳遞給學生,便于學生理解掌握。

根據(jù)課堂教學情況,課后及時總結(jié),不斷改進,精益求精,努力提高課堂教學效果。

結(jié)束:以上是我說課的內(nèi)容,不當之處希望各位評委老師提出寶貴意見。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇十

1、教材的地位和作用:

《等差數(shù)列》是人教版新課標教材《數(shù)學》必修5第二章第二節(jié)的內(nèi)容。數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

2、教學目標

根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

a知識與技能:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學建?!钡乃枷敕椒ú⒛苓\用。培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

b.過程與方法:在教學過程中我采用討論式、啟發(fā)式的方法使學生深刻的理解不完全歸納法。

c.情感態(tài)度與價值觀:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

3、教學重點和難點

重點:①等差數(shù)列的概念。

②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

難點:①等差數(shù)列的通項公式的推導(dǎo)

②用數(shù)學思想解決實際問題

對于高一學生,知識經(jīng)驗已較為豐富,具備了一定的抽象思維能力和演繹推理能力,所以我本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。學生在初中時只是簡單的接觸過等差數(shù)列,具體的公式還不會用,因些在公式應(yīng)用上加強學生的理解

在引導(dǎo)分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

1.創(chuàng)設(shè)情景 提出問題

首先要學生回憶數(shù)列的有關(guān)概念,數(shù)列的兩種方法——通項公式和遞推公式

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇十一

本節(jié)知識的學習既能加深對數(shù)列概念的理解,又為后面學習數(shù)列有關(guān)知識提供研究的方法,具有承上啟下的重要作用。而且等差數(shù)列求和在現(xiàn)實中有著廣泛的應(yīng)用,同時本節(jié)課的學習還蘊涵著倒序相加、數(shù)形結(jié)合、方程思想等深刻的數(shù)學思想方法。

知識基礎(chǔ):學生已掌握了函數(shù)、數(shù)列等有關(guān)基礎(chǔ)知識,并且在小學和初中已了解特殊的數(shù)列求和。

能力基礎(chǔ):高二學生已初步具備邏輯思維能力,能在教師的引導(dǎo)下解決問題,但處理抽象問題的能力還有待進一步提高。

依據(jù)課標,以及學生現(xiàn)有知識和本節(jié)教學內(nèi)容,制定教學目標如下:

(1)知識與技能目標:(?。?初步掌握等差數(shù)列的前項和公式及推導(dǎo)方法;

(ⅱ) 當以下5個量(a1,d,n,an,sn)中已知三個量時,能熟練運用通項公式、前n項和公式求其余兩個量。

(2)過程與方法目標:通過公式的推導(dǎo)和公式的應(yīng)用,使學生體會數(shù)形結(jié)合的思想方法,體驗從特殊到一般,再從一般到特殊的思維規(guī)律。

(3)情感態(tài)度與價值觀:通過經(jīng)歷等差數(shù)列的前項和公式的探究活動,培養(yǎng)學生探索精神和創(chuàng)新意識,提高學生解決實際問題的觀念,激發(fā)學生的學習熱情。

等差數(shù)列前項和公式的推導(dǎo)有助于培養(yǎng)學生的發(fā)散思維,而且在應(yīng)用公式的過程中體現(xiàn)了方程(組)思想,所以等差數(shù)列前項和公式的推導(dǎo)和簡單應(yīng)用是本節(jié)課的重點。但由于高二學生推理能力有待提高,所以難點在于一般等差數(shù)列前項和公式的推導(dǎo)方法上。

畢達哥拉斯說過:“在數(shù)學的天地里,重要的不是我們知道什幺,而是我們怎幺知道什幺?!?/p>

針對本節(jié)課的特點,教師采用問題探究式教學法,學生的學法以發(fā)現(xiàn)式學習法為主。

教學手段上通過多媒體輔助教學,可以幫助學生直觀理解,提高課堂效率。

建構(gòu)主義理論認為教師應(yīng)以問題為載體,以學生活動為主線開展教學。為此,我設(shè)計如下(情境引入、公式探索、公式推導(dǎo)、公式應(yīng)用、歸納總結(jié)和發(fā)展作業(yè))六個環(huán)節(jié)

1.情境引入

上課伊始,先給同學們看一段視頻,回顧學校建校60年的光輝歷史,然后跟同學們共同欣賞照片,提出

問題1:學校為了慶祝建校60年,在校園里擺放了一些鮮花,最前面一行擺了4盆,后面每行比前一行多一盆,共八行,一共擺放了多少盆鮮花?

這樣設(shè)計幫助學生了解學校歷史,滲透德育教育,激發(fā)學習熱情。

有的學生會選擇直接相加,教師提出問題:有沒有簡單的方法呢?自然進入第二環(huán)節(jié)。

2.公式探索

發(fā)現(xiàn)公式的推導(dǎo)方法是本節(jié)課的難點,我先引導(dǎo)學生明確上述問題的本質(zhì)是等差數(shù)列求和問題,引出課題并板書,提出:

問題2:如果每行的花都一樣多,則花的總數(shù)易于求得,我們怎樣能把這些花補成每行都一樣多呢?

此時,學生會想到如下幾種拼湊形式,我們選擇最易于解決原問題的第1種

教師及時引導(dǎo)學生小結(jié):

對于求等差數(shù)列的前n項和在已知a1,an,n時,可選擇公式(1);已知a1,d,n時可選擇公式(2);

設(shè)計意圖:例1是等差數(shù)列前項和兩個公式的直接應(yīng)用,對于不同的已知條件選擇不同的公式,幫助學生完成對公式的記憶和鞏固,例1的第(2)問由教師板書解題步驟,起到了示范教學的效果。

例2由學生板書,師生共同完善給予評價,變式由學生互評,教師及時引導(dǎo)學生進行小結(jié):

已知等差數(shù)列如下a1,d,n,an,sn五個量中三個可求其余兩個,即等差數(shù)列“知三求二”。

設(shè)計上述題目,實現(xiàn)對公式的簡單應(yīng)用這一教學目標。

5.歸納總結(jié)

教師引導(dǎo)學生總結(jié)本節(jié)課的知識要點和思想方法,師生共同完善,對本節(jié)內(nèi)容整體把握。

6.布置作業(yè)

我根據(jù)學情分層布置作業(yè),基礎(chǔ)性作業(yè)的安排是為鞏固課堂內(nèi)容,發(fā)展性作業(yè)可以幫助學生進一步體會等差數(shù)列前項和公式的結(jié)構(gòu),通過開放性作業(yè),幫助學生關(guān)注課堂,拓展知識面,提高學生自主學習能力。

(課件打出(1)課本第41頁練習b 1,2題

(2) 思考與討論:自主探討公式(2)并思考:如果一個數(shù)列的前n項和sn=an2+bn+c(a,b,c為常數(shù)),那幺這個數(shù)列一定是等差數(shù)列嗎?請同學們給予證明。

六、設(shè)計說明

1.設(shè)計特色

(1)在探求公式推導(dǎo)思路的過程中,滲透德育教育,培養(yǎng)學生良好道德情操;

(2)公式推導(dǎo)和應(yīng)用階段,借助問題臺階,創(chuàng)造性使用教材,符合認知規(guī)律,體現(xiàn)教學科學性。

2.是板書設(shè)計。

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇十二

1.知識與技能目標:掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題。

2.過程與方法目標:讓學生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養(yǎng)學生分析問題解決問題的能力。

3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習慣。

1.教學重點:等差數(shù)列的概念的理解,通項公式的推導(dǎo)及應(yīng)用。

2.教學難點:

(1)對等差數(shù)列中“等差”兩字的把握;

(2)等差數(shù)列通項公式的推導(dǎo)。

創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學習一類特殊的數(shù)列,下面我們看這樣一些例子)

(一)等差數(shù)列的定義

1、等差數(shù)列的定義

如果一個數(shù)列從第二項起,每一項與前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

(1)定義中的關(guān)健詞有哪些?

(2)公差d是哪兩個數(shù)的差?

(二)等差數(shù)列的通項公式

探究1:等差數(shù)列的通項公式(求法一)

如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?

根據(jù)等差數(shù)列的定義可得:

因此等差數(shù)列的通項公式就是:,

探究2:等差數(shù)列的通項公式(求法二)

根據(jù)等差數(shù)列的定義可得:

將以上-1個式子相加得等差數(shù)列的通項公式就是:,

例1、(1)求等差數(shù)列8,5,2,…,的第20項。

(2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?

(2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。

例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.

解:由,得。

在應(yīng)用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

鞏固練習

1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

2.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

1.等差數(shù)列的通項公式:

公差;

2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學系規(guī)律或解決數(shù)學問題.

1、必做題:課本第40頁習題2.2第1,3,5題

2、選做題:如何以最快的速度求:1+2+3+???+100=

等差數(shù)列說課稿免費 等差數(shù)列說課稿一等獎篇十三

一、教材分析

1、教材的地位和作用:

數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

2、教學目標

根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學建?!钡乃枷敕椒ú⒛苓\用。

b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

3、教學重點和難點

根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:①等差數(shù)列的概念。②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。

由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對“數(shù)學建模”的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

二、學情教法分析:

對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。

三、學法指導(dǎo):

在引導(dǎo)分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

四、教學程序

本節(jié)課的教學過程由(一)復(fù)習引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

(一)復(fù)習引入:

1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(n﹡;解析式)

通過練習1復(fù)習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ......

3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ......

通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情站境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

(二) 新課探究

1、由引入自然的給出等差數(shù)列的概念:

如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):① “從第二項起”滿足條件;②公差d一定是由后項減前項所得;③每一項與它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” )。

在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

全文閱讀已結(jié)束,如果需要下載本文請點擊

下載此文檔
a.付費復(fù)制
付費獲得該文章復(fù)制權(quán)限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復(fù)制
付費后30天內(nèi)不限量復(fù)制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯(lián)系客服