作為一位杰出的教職工,總歸要編寫教案,教案是教學活動的總的組織綱領和行動方案。教案書寫有哪些要求呢?我們怎樣才能寫好一篇教案呢?這里我給大家分享一些最新的教案范文,方便大家學習。
高一數學教案篇一
(1)通過實物操作,增強學生的直觀感知。
(2)能根據幾何結構特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結構特征。
(4)會表示有關于幾何體以及柱、錐、臺的分類。
(1)讓學生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結構特征。
(2)讓學生觀察、討論、歸納、概括所學的知識。
(1)使學生感受空間幾何體存在于現(xiàn)實生活周圍,增強學生學習的積極性,同時提高學生的觀察能力。
(2)培養(yǎng)學生的空間想象能力和抽象括能力。
重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結構特征。 難點:柱、錐、臺、球的結構特征的概括。
(1)學法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀 四、教學思路
1、教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結構特征如何?引導學生回憶,舉例和相互交流。教師對學生的活動及時給予評價。
2、所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結構特征的空間物體),你能通過觀察。根據某種標準對這些空間物體進行分類嗎?這是我們所要學習的內容。
1、引導學生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3、組織學生分組討論,每小組選出一名同學發(fā)表本組討論結果。在此基礎上得出棱柱的主要結構特征。
(1)有兩個面互相平行;
(2)其余各面都是平行四邊形;
(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4、教師與學生結合圖形共同得出棱柱相關概念以及棱柱的表示。
5、提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據不同對棱柱分類?
6、以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結構特征,并得出相關的概念,分類以及表示。
7、讓學生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標的概念以及相關的概念及圓柱的表示。
8、引導學生以類似的方法思考圓錐、圓臺、球的結構特征,以及相關概念和表示,借助實物模型演示引導學生思考、討論、概括。
9、教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
1、有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)
2、棱柱的何兩個平面都可以作為棱柱的底面嗎?
3、課本p8,習題1.1 a組第1題。
5、棱臺與棱柱、棱錐有什么關系?圓臺與圓柱、圓錐呢?
由學生整理學習了哪些內容 六、布置作業(yè)
課本p8 練習題1.1 b組第1題
課外練習 課本p8 習題1.1 b組第2題
高一數學教案篇二
三維目標的具體內容和層次劃分
請闡述數學課堂教學三維目標的具體內容和層次劃分
所謂三維目標是是指:“知識與技能”,“過程和方法”、“情感、態(tài)度、價值觀”。
知識與技能:既是課堂教學的出發(fā)點,又是課堂教學的歸宿。我們在教學過程中,需要學生掌握什么,哪些些問題需要重點掌握,哪些只需簡單理解;技能是會與不會的問題。屬顯性范疇,具有可測性,大都采用定量分析與評價、知識與技能是傳統(tǒng)教學合理的內核,是我國傳統(tǒng)教育教學的優(yōu)勢,應該從傳統(tǒng)教學中繼承與發(fā)揚。新課改不是不要雙基,而是不要過度的強調雙基,而舍棄弱化其它有價值的東西,導致非全面、不和藹的發(fā)展。
過程與方法:既是課堂教學的目標之一,又是課堂教學的操作系統(tǒng)?!斑^程和方法”維度的目標立足于讓學生會學,新課程倡導對學與教的過程的體驗、方法的選擇,是在知識與能力目標基礎上對教學目標的進一步開發(fā)。過程與方法是一個體驗的過程、發(fā)現(xiàn)的過程,不但可以讓學生體驗到科學發(fā)展的過程,我們更多地要讓學生掌握過程,不一定要統(tǒng)一的結果。
情感、態(tài)度與價值觀:既是課堂教學的目標之一,又是課堂教學的動力系統(tǒng)?!扒楦?、態(tài)度和價值觀”,目標立足于讓學生樂學,新課程倡導對學與教的情感體驗、態(tài)度形成、價值觀的體現(xiàn),是在知識與能力、過程與方法目標基礎上對教學目標深層次的開拓,只有學生充分的認識到他們肩負的責任,就能夠激發(fā)起他們的學習熱情,他們才會有濃厚的學習興趣,才能學有所成,將來回報社會。
三維目標不是三個目標,也不是三種目標,是一個問題的三個方面。三維目標是三位一體不可分割的,他們是相輔相成的,相互促進的。
高一數學教案篇三
(1)了解含有“或”、“且”、“非”復合命題的概念及其構成形式;
(2)理解邏輯聯(lián)結詞“或”“且”“非”的含義;
(3)能用邏輯聯(lián)結詞和簡單命題構成不同形式的復合命題;
(4)能識別復合命題中所用的邏輯聯(lián)結詞及其聯(lián)結的簡單命題;
(5)會用真值表判斷相應的復合命題的真假;
(6)在知識學習的基礎上,培養(yǎng)學生簡單推理的技能.
重點是判斷復合命題真假的方法;難點是對“或”的含義的理解.
1.新課導入
初一平面幾何中曾學過命題,請同學們舉一個命題的例子.(板書:命題.)
(從初中接觸過的“命題”入手,提出問題,進而學習邏輯的有關知識.)
學生舉例:平行四邊形的對角線互相平. ……(1)
兩直線平行,同位角相等.…………(2)
教師提問:“……相等的角是對頂角”是不是命題?……(3)
(同學議論結果,答案是肯定的.)
教師提問:什么是命題?
(學生進行回憶、思考.)
概念總結:對一件事情作出了判斷的語句叫做命題.
(教師肯定了同學的回答,并作板書.)
(教師利用投影片,和學生討論以下問題.)
例1 判斷以下各語句是不是命題,若是,判斷其真假:
2.講授新課
(片刻后請同學舉手回答,一共講了四個問題.師生一道歸納如下.)
(1)什么叫做命題?
可以判斷真假的語句叫做命題.
(2)介紹邏輯聯(lián)結詞“或”、“且”、“非”.
命題可分為簡單命題和復合命題.
(4)命題的表示:用p ,q ,r ,s ,……來表示.
(教師根據學生回答的情況作補充和強調,特別是對復合命題的概念作出分析和展開.)
對于給出“若p 則q ”形式的復合命題,應能找到條件p 和結論q .
3.鞏固新課
(1)5 ;
(2)0.5非整數;
(3)內錯角相等,兩直線平行;
(4)菱形的對角線互相垂直且平分;
(5)平行線不相交;
(6)若ab=0 ,則a=0 .
(讓學生有充分的時間進行辨析.教材中對“若…則…”不作要求,教師可以根據學生的情況作些補充.)
高一數學教案篇四
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
4、設分別是雙曲線的半焦距和離心率,則雙曲線的一個頂點到它的一條漸近線的距離是、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
將本文的word文檔下載到電腦,方便收藏和打印
推薦度:
點擊下載文檔
搜索文檔
高一數學教案篇五
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發(fā)展獨立獲取數學知識的能力。
4.發(fā)展數學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。 6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(a版)》,它在堅持我國數學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承,借簽,發(fā)展,創(chuàng)新之間的關系,體現(xiàn)基礎性,時代性,典型性和可接受性等到,具有如下特點:
1.親和力:以生動活潑的呈現(xiàn)方式,激發(fā)興趣和美感,引發(fā)學習激情。
2.問題性:以恰時恰點的問題引導數學活動,培養(yǎng)問題意識,孕育創(chuàng)新精神。
3.科學性與思想性:通過不同數學內容的聯(lián)系與啟發(fā),強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.時代性與應用性:以具有時代性和現(xiàn)實感的素材創(chuàng)設情境,加強數學活動,發(fā)展應用意識。
1. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創(chuàng)設能夠體現(xiàn)數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發(fā)學生看個究竟的沖動,以達到培養(yǎng)其興趣的目的。
2. 通過觀察,思考,探究等欄目,引發(fā)學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,盡可能養(yǎng)成其邏輯思維的習慣。
兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養(yǎng)其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以后的教學中,重點在于培養(yǎng)學生的計算能力,同時要進一步提高其思維能力。同時,由于初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
1、激發(fā)學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發(fā),從感性提高到理性;注意運用對比的方法,反復比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的`知識出發(fā),啟發(fā)學生思考。
3、加強培養(yǎng)學生的邏輯思維能力就解決實際問題的能力,以及培養(yǎng)提高學生的自學能力,養(yǎng)成善于分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯(lián)系;加強復習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環(huán)節(jié),針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養(yǎng)。
俗話說的好,好的教學計劃是教學成功的一半,作為一名優(yōu)異的教師,做好一定的教學計劃很有必要。
總結:制定教學計劃的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學。希望上面的,能受到大家的歡迎!
高一數學教案篇六
1、鞏固集合、子、交、并、補的概念、性質和記號及它們之間的關系
2、了解集合的運算包含了集合表示法之間的轉化及數學解題的一般思想
3、了解集合元素個數問題的討論說明
通過提問匯總練習提煉的形式來發(fā)掘學生學習方法
培養(yǎng)學生系統(tǒng)化及創(chuàng)造性的思維
[教學重點、難點]:會正確應用其概念和性質做題 [教 具]:多媒體、實物投影儀
[教學方法]:講練結合法
[授課類型]:復習課
[課時安排]:1課時
[教學過程]:集合部分匯總
本單元主要介紹了以下三個問題:
1,集合的含義與特征
2,集合的表示與轉化
3,集合的基本運算
一,集合的含義與表示(含分類)
1,具有共同特征的對象的全體,稱一個集合
2,集合按元素的個數分為:有限集和無窮集兩類
高一數學教案篇七
學習是一個潛移默化、厚積薄發(fā)的過程。編輯老師編輯了高一數學教案:數列,希望對您有所幫助!
教學目標
1、使學生理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,并能根據遞推公式寫出數列的前幾項。
(1)理解數列是按一定順序排成的一列數,其每一項是由其項數唯一確定的。
(2)了解數列的各種表示方法,理解通項公式是數列第項與項數的關系式,能根據通項公式寫出數列的前幾項,并能根據給出的一個數列的前幾項寫出該數列的一個通項公式。
(3)已知一個數列的遞推公式及前若干項,便確定了數列,能用代入法寫出數列的前幾項。
2、通過對一列數的觀察、歸納,寫出符合條件的一個通項公式,培養(yǎng)學生的觀察能力和抽象概括能力。
3、通過由求的過程,培養(yǎng)學生嚴謹的科學態(tài)度及良好的思維習慣。
教學建議
(1)為激發(fā)學生學習數列的興趣,體會數列知識在實際生活中的作用,可由實際問題引入,從中抽象出數列要研究的問題,使學生對所要研究的內容心中有數,如書中所給的例子,還有物品堆放個數的計算等。
(2)數列中蘊含的函數思想是研究數列的指導思想,應及早引導學生發(fā)現(xiàn)數列與函數的關系。在教學中強調數列的項是按一定順序排列的,“次序”便是函數的自變量,相同的數組成的數列,次序不同則就是不同的數列。函數表示法有列表法、圖象法、解析式法,類似地,數列就有列舉法、圖示法、通項公式法。由于數列的自變量為正整數,于是就有可能相鄰的兩項(或幾項)有關系,從而數列就有其特殊的表示法——遞推公式法。
(3)由數列的通項公式寫出數列的前幾項是簡單的代入法,教師應精心設計例題,使這一例題為寫通項公式作一些準備,尤其是對程度差的學生,應多舉幾個例子,讓學生觀察歸納通項公式與各項的結構關系,盡量為寫通項公式提供幫助。
(4)由數列的前幾項寫出數列的一個通項公式使學生學習中的一個難點,要幫助學生分析各項中的結構特征(整式,分式,遞增,遞減,擺動等),由學生歸納一些規(guī)律性的結論,如正負相間用來調整等。如果學生一時不能寫出通項公式,可讓學生依據前幾項的規(guī)律,猜想該數列的下一項或下幾項的值,以便尋求項與項數的關系。
(5)對每個數列都有求和問題,所以在本節(jié)課應補充數列前項和的概念,用表示的問題是重點問題,可先提出一個具體問題讓學生分析與的關系,再由特殊到一般,研究其一般規(guī)律,并給出嚴格的推理證明(強調的表達式是分段的);之后再到特殊問題的解決,舉例時要兼顧結果可合并及不可合并的情況。
(6)給出一些簡單數列的通項公式,可以求其最大項或最小項,又是函數思想與方法的體現(xiàn),對程度好的學生應提出這一問題,學生運用函數知識是可以解決的。
上述提供的高一數學教案:數列希望能夠符合大家的實際需要!
高一數學教案篇八
(2)理解任意角的三角函數不同的定義方法;
(4)掌握并能初步運用公式一;
(5)樹立映射觀點,正確理解三角函數是以實數為自變量的函數。
初中學過:銳角三角函數就是以銳角為自變量,以比值為函數值的函數。引導學生把這個定義推廣到任意角,通過單位圓和角的終邊,探討任意角的三角函數值的求法,最終得到任意角三角函數的定義。根據角終邊所在位置不同,分別探討各三角函數的定義域以及這三種函數的值在各象限的符號。最后主要是借助有向線段進一步認識三角函數。講解例題,總結方法,鞏固練習。
任意角的三角函數可以有不同的定義方法,而且各種定義都有自己的特點。過去習慣于用角的終邊上點的坐標的“比值”來定義,這種定義方法能夠表現(xiàn)出從銳角三角函數到任意角的三角函數的推廣,有利于引導學生從自己已有認知基礎出發(fā)學習三角函數,但它對準確把握三角函數的本質有一定的不利影響,“從角的集合到比值的集合”的對應關系與學生熟悉的一般函數概念中的“數集到數集”的對應關系有沖突,而且“比值”需要通過運算才能得到,這與函數值是一個確定的實數也有不同,這些都會影響學生對三角函數概念的理解。
本節(jié)利用單位圓上點的坐標定義任意角的正弦函數、余弦函數。這個定義清楚地表明了正弦、余弦函數中從自變量到函數值之間的對應關系,也表明了這兩個函數之間的關系。
教學重難點
重點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);終邊相同的角的同一三角函數值相等(公式一).
難點:任意角的正弦、余弦、正切的定義(包括這三種三角函數的定義域和函數值在各象限的符號);三角函數線的正確理解。
高一數學教案篇九
本學期將完成數學必修1和數學必修4(人教a版)兩本教材的的學習,教學輔助材料有《同步金太陽導學》。
認真深入地學習《新課程標準》,研讀教材。明確教學目的,把握教學目標,把準教學標高。注意到新教材的特點親和力問題性思想性聯(lián)系性,注意對基本概念的理解、基本規(guī)律的掌握、基本方法的應用上多下功夫,轉變教學觀念,螺旋上升地安排核心數學概念和重要數學思想,加強數學思想方法的滲透與概括。在課堂教學中要以學生為主,注重師生互動,對基本的知識點要落實到位,新教材對教學中有疑問的地方要在備課組中多加討論和研究,特別是有關概念課的教學,一定要講清概念的發(fā)生、發(fā)展、內涵、外延,不要模棱兩可。
1.處理好初高中銜接問題。初中內容的不適當刪減、降低要求,導致學生雙基無法達到高中教學要求;高中不顧學生的基礎,任意拔高教學要求,繁瑣的、高難度的運算充斥課堂。對初中沒學而高中又要求掌握的內容(具體內容見附錄)。
2.準確把握教學要求,循序漸進地教學。不搞一步到位刪減的內容不要隨意補充;不要擅自調整內容順序;教輔材料不能作為教學的依據;把更多的注意力放在核心概念、基本數學思想方法上;追求通性通法,不追求特技。
3.適當使用信息技術。新課程主張多媒體教學。在教材中很容易發(fā)現(xiàn)新課改對信息技術在數學教學上的應用,并在配備的光盤中提供了相當數量的課件,有利于學生更全面的吸收知識,提高課堂注意力和學習的興趣。但我還是認為,多媒體知識教學的輔助手段,選不選用多媒體要看教學內容。尤其是數學這門學科,有些直觀的內容用多媒體還是不錯的,但有的內容諸如讓學生思考體會的問題不是很適合多媒體教學的。根據學習內容需要選擇恰當的信息技術工具和使用科學型計算器;提倡適當使用各種數學軟件。
4.充分發(fā)揮集體備課的作用。利用每周一次的集體備課,認真討論本周的教學得失,研究下周所教內容的重難點,安排周練的內容。要根據實際情況,有針對性地組編訓練題,做到每周一次綜合訓練(同步或滾雪球式的保溫訓練),一次微型補差訓練,要搞好單元過關訓練。選題要注意基礎,強化通法,針對性強,避免對資料上的訓練題全套照搬使用。要重視對數學尖子生的培養(yǎng),力爭在數學競賽中取得好成績。
5.在重視智力因素的同時必須關注非智力因素。應認識到非智力因素在學生全面發(fā)展和數學學習過程中所起的重要作用,并內化為自覺的行為,切實培養(yǎng)學生學習數學的興趣和良好的個性品質。
高一數學教案篇十
各位評委、各位專家,大家好!今天,我說課的內容是人民教育出版社全日制普通高級中學教科書(必修)《數學》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學目標分析、教學重難點分析、教法與學法、課堂設計、效果評價六方面進行說課。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運用與鞏固,也為下一章函數的定義域和值域教學作鋪墊,起著鏈條的作用。同時,這部分內容較好地反映了方程、不等式、函數知識的內在聯(lián)系和相互轉化,蘊含著歸納、轉化、數形結合等豐富的數學思想方法,能較好地培養(yǎng)學生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
(二)教學內容
本節(jié)內容分2課時學習。本課時通過二次函數的圖象探索一元二次不等式的解集。通過復習“三個一次”的關系,即一次函數與一元一次方程、一元一次不等式的關系;以舊帶新尋找“三個二次”的關系,即二次函數與一元二次方程、一元二次不等式的關系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數學中的和諧美,體驗成功的樂趣。
二、教學目標分析
根據教學大綱的要求、本節(jié)教材的特點和高一學生的認知規(guī)律,本節(jié)課的教學目標確定為:
知識目標——理解“三個二次”的關系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標——通過看圖象找解集,培養(yǎng)學生“從形到數”的轉化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標——創(chuàng)設問題情景,激發(fā)學生觀察、分析、探求的學習激情、強化學生參與意識及主體作用。
三、重難點分析
一元二次不等式是高中數學中最基本的不等式之一,是解決許多數學問題的重要工具。本節(jié)課的重點確定為:一元二次不等式的解法。
要把握這個重點。關鍵在于理解并掌握利用二次函數的圖象確定一元二次不等式解集的方法——圖象法,其本質就是要能利用數形結合的思想方法認識方程的解,不等式的解集與函數圖象上對應點的橫坐標的內在聯(lián)系。由于初中沒有專門研究過這類問題,高一學生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點確定為:“三個二次”的關系。要突破這個難點,讓學生歸納“三個一次”的關系作鋪墊。
四、教法與學法分析
(一)學法指導
教學矛盾的主要方面是學生的學。學是中心,會學是目的。因此在教學中要不斷指導學生學會學習。本節(jié)課主要是教給學生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學習方法,這樣做增加了學生自主參與,合作交流的機會,教給了學生獲取知識的途徑、思考問題的方法,使學生真正成了教學的主體;只有這樣做,才能使學生“學”有新“思”,“思”有新“得”,“練”有新“獲”,學生也才會逐步感受到數學的美,會產生一種成功感,從而提高學生學習數學的興趣;也只有這樣做,課堂教學才富有時代特色,才能適應素質教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設計的指導思想是:現(xiàn)代認知心理學——建構主義學習理論。
建構主義學習理論認為:應把學習看成是學生主動的建構活動,學生應與一定的知識背景即情景相聯(lián)系,在實際情景下進行學習,可以使學生利用已有知識與經驗同化和索引出當前要學習的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學法”。把問題作為出發(fā)點,指導學生“畫、看、說、用”。較好地探求一元二次不等式的解法。
高一數學教案篇十一
1、掌握雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質
2、掌握標準方程中的幾何意義
3、能利用上述知識進行相關的論證、計算、作雙曲線的草圖以及解決簡單的實際問題
1、焦點在x軸上,虛軸長為12,離心率為的雙曲線的標準方程為、
2、頂點間的距離為6,漸近線方程為的雙曲線的標準方程為、
3、雙曲線的漸進線方程為、
探究1、類比橢圓的幾何性質寫出雙曲線的幾何性質,畫出草圖并,說出它們的不同、
探究2、雙曲線與其漸近線具有怎樣的關系、
練習:已知雙曲線經過,且與另一雙曲線,有共同的漸近線,則此雙曲線的標準方程是、
例1根據以下條件,分別求出雙曲線的標準方程、
(1)過點,離心率、
(2)、是雙曲線的左、右焦點,是雙曲線上一點,且,,離心率為、
例3(理)求離心率為,且過點的雙曲線標準方程、
2、橢圓的離心率為,則雙曲線的離心率為、
3、雙曲線的漸進線方程是,則雙曲線的離心率等于=、
4、設雙曲線的半焦距為,直線過、兩點,且原點到直線的距離為,求雙曲線的離心率、
高一數學教案篇十二
1.知識與技能:掌握畫三視圖的基本技能,豐富學生的空間想象力。
2.過程與方法:通過學生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀:提高學生空間想象力,體會三視圖的作用。
二、教學重點:畫出簡單幾何體、簡單組合體的三視圖;
難點:識別三視圖所表示的空間幾何體。
三、學法指導:觀察、動手實踐、討論、類比。
四、教學過程
(一)創(chuàng)設情景,揭開課題
展示廬山的風景圖——“橫看成嶺側看成峰,遠近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體。
(二)講授新課
1、中心投影與平行投影:
中心投影:光由一點向外散射形成的投影;
平行投影:在一束平行光線照射下形成的投影。
正投影:在平行投影中,投影線正對著投影面。
2、三視圖:
正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;
側視圖:光線從幾何體的左面向右面正投影,得到的投影圖;
俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。
三視圖:幾何體的正視圖、側視圖和俯視圖統(tǒng)稱為幾何體的三視圖。
三視圖的畫法規(guī)則:長對正,高平齊,寬相等。
長對正:正視圖與俯視圖的長相等,且相互對正;
高平齊:正視圖與側視圖的高度相等,且相互對齊;
寬相等:俯視圖與側視圖的寬度相等。
3、畫長方體的三視圖:
正視圖、側視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。
長方體的三視圖都是長方形,正視圖和側視圖、側視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。
4、畫圓柱、圓錐的三視圖:
5、探究:畫出底面是正方形,側面是全等的三角形的棱錐的三視圖。
(三)鞏固練習
課本p15練習1、2;p20習題1.2[a組]2。
(四)歸納整理
請學生回顧發(fā)表如何作好空間幾何體的三視圖
(五)布置作業(yè)
課本p20習題1.2[a組]1。