作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動(dòng)的總的組織綱領(lǐng)和行動(dòng)方案。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?又該怎么寫呢?那么下面我就給大家講一講教案怎么寫才比較好,我們一起來看一看吧。
人教版八年級(jí)數(shù)學(xué)教案篇一
1.重點(diǎn):勾股定理逆定理的應(yīng)用.
2.難點(diǎn):勾股定理逆定理的證明.
3.疑點(diǎn)及分析和解決方法:勾股定理逆定理的證明方法,又是學(xué)生前所未見的,是運(yùn)用代數(shù)計(jì)算方法證明幾何問題,是解析幾何中研究問題的方法,以后會(huì)逐步見到,這一點(diǎn)要讓學(xué)生有所認(rèn)識(shí).
人教版八年級(jí)數(shù)學(xué)教案篇二
一、教學(xué)目標(biāo):理解分式乘方的運(yùn)算法則,熟練地進(jìn)行分式乘方的運(yùn)算。
二、重點(diǎn)、難點(diǎn)。
1、重點(diǎn):熟練地進(jìn)行分式乘方的運(yùn)算。
2、難點(diǎn):熟練地進(jìn)行分式乘、除、乘方的混合運(yùn)算。
3、認(rèn)知難點(diǎn)與突破方法。
順其自然地推導(dǎo)可得:
===,即=。(n為正整數(shù))。
歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方。
三、例、習(xí)題的意圖分析。
1、p17例5第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判。
斷乘方的結(jié)果的符號(hào),在分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除。.
2、教材p17例5中象第(1)題這樣的分式的乘方運(yùn)算只有一題,對(duì)于初學(xué)者來說,練習(xí)的量顯然少了些,故教師應(yīng)作適當(dāng)?shù)难a(bǔ)充練習(xí)。同樣象第(2)題這樣的分式的乘除與乘方的混合運(yùn)算,也應(yīng)相應(yīng)的增加幾題為好。
分式的乘除與乘方的混合運(yùn)算是學(xué)生學(xué)習(xí)中重點(diǎn),也是難點(diǎn),故補(bǔ)充例題,強(qiáng)調(diào)運(yùn)算順序,不要盲目地跳步計(jì)算,提高正確率,突破這個(gè)難點(diǎn)。
四、課堂引入。
計(jì)算下列各題:
(1)==()(2)==()。
(3)==()。
[提問]由以上計(jì)算的結(jié)果你能推出(n為正整數(shù))的結(jié)果嗎?
五、例題講解。
(p17)例5.計(jì)算。
[分析]第(1)題是分式的乘方運(yùn)算,它與整式的乘方一樣應(yīng)先判斷乘方的結(jié)果的符號(hào),再分別把分子、分母乘方。第(2)題是分式的乘除與乘方的混合運(yùn)算,應(yīng)對(duì)學(xué)生強(qiáng)調(diào)運(yùn)算順序:先做乘方,再做乘除。
六、隨堂練習(xí)。
1、判斷下列各式是否成立,并改正。
(1)=(2)=。
(3)=(4)=。
2、計(jì)算。
(1)(2)(3)。
(4)5)。
(6)。
七、課后練習(xí)。
計(jì)算。
(1)(2)。
(3)(4)。
八、答案:
六、1.(1)不成立,=(2)不成立,=。
(3)不成立,=(4)不成立,=。
2、(1)(2)(3)(4)。
(5)(6)。
七、(1)(2)(3)(4)。
人教版八年級(jí)數(shù)學(xué)教案篇三
嚴(yán)格的講教材本節(jié)課沒有引入的問題,而是在復(fù)習(xí)和延伸中位數(shù)的定義過程中拉開序幕的,本人很同意這種處理方式,教師可以一句話引入新課:前面已經(jīng)和同學(xué)們研究過了平均數(shù)的這個(gè)數(shù)據(jù)代表。它在分析數(shù)據(jù)過程中擔(dān)當(dāng)了重要的角色,今天我們來共同研究和認(rèn)識(shí)數(shù)據(jù)代表中的新成員——中位數(shù)和眾數(shù),看看它們?cè)诜治鰯?shù)據(jù)過程中又起到怎樣的作用。
人教版八年級(jí)數(shù)學(xué)教案篇四
上節(jié)課我們認(rèn)識(shí)了什么是二次根式,那么二次根式有什么性質(zhì)呢?本節(jié)課我們一起來學(xué)習(xí)。
二、展示目標(biāo),自主學(xué)習(xí):
自學(xué)指導(dǎo):認(rèn)真閱讀課本第3頁——4頁內(nèi)容,完成下列任務(wù):
1、請(qǐng)比較與0的大小,你得到的結(jié)論是:________________________。
2、完成3頁“探究”中的填空,你得到的結(jié)論是____________________。
3、看例2是怎樣利用性質(zhì)進(jìn)行計(jì)算的。
4、完成4頁“探究”中的填空,你得到的結(jié)論是:____________________。
5、看懂例3,有困難可與同伴交流或問老師。
人教版八年級(jí)數(shù)學(xué)教案篇五
教學(xué)過程中滲透類比的數(shù)學(xué)思想,形成新的知識(shí)結(jié)構(gòu)體系;設(shè)置探究式教學(xué),讓學(xué)生經(jīng)歷知識(shí)的形成,從而達(dá)到對(duì)知識(shí)的深刻理解與靈活應(yīng)用。
學(xué)法:自主、合作、探索的學(xué)習(xí)方式。
在教學(xué)活動(dòng)中,既要提高學(xué)生獨(dú)立解決問題的能力,又要培養(yǎng)團(tuán)結(jié)協(xié)作精神,拓展學(xué)生探究問題的深度與廣度,體現(xiàn)素質(zhì)教育的要求。
人教版八年級(jí)數(shù)學(xué)教案篇六
正比例函數(shù)的概念.
2.內(nèi)容解析。
一次函數(shù)是最基本的初等函數(shù),是初中函數(shù)學(xué)習(xí)的重要內(nèi)容,正比例函數(shù)是特殊的一次函數(shù),也是初中學(xué)生接觸到的第一種函數(shù),要通過對(duì)正比例函數(shù)內(nèi)容的學(xué)習(xí),為后續(xù)類比學(xué)習(xí)一般一次函數(shù)打好基礎(chǔ),了解研究函數(shù)的基本套路和方法,積累研究一般一次函數(shù)乃至其他各種函數(shù)的基本經(jīng)驗(yàn).
對(duì)正比例函數(shù)概念的學(xué)習(xí),既要借助具體的函數(shù)進(jìn)一步加深對(duì)函數(shù)概念的理解,即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng),這是理解正比例函數(shù)的核心;也要加強(qiáng)對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),即根據(jù)實(shí)際問題構(gòu)建的函數(shù)模型中,函數(shù)和自變量每一對(duì)對(duì)應(yīng)值的比值是一定的,等于比例系數(shù),反映在函數(shù)解析式上,這些函數(shù)都是常數(shù)與自變量的積的形式,這是正比例函數(shù)的基本特征.
本節(jié)課主要是通過對(duì)生活中大量實(shí)際問題的分析,寫出變量間的函數(shù)關(guān)系式,觀察比較概括出這些函數(shù)關(guān)系式具有的共同特征,根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念,再用正比例函數(shù)的概念對(duì)具體函數(shù)進(jìn)行辨析,對(duì)實(shí)際事例進(jìn)行分析,根據(jù)已知條件寫出正比例函數(shù)的解析式.
基于以上分析,確定本節(jié)課的教學(xué)重點(diǎn):正比例函數(shù)的概念.
二、目標(biāo)和目標(biāo)解析。
1.目標(biāo)。
(1)經(jīng)歷正比例函數(shù)概念的形成過程,理解正比例函數(shù)的概念;。
(2)能根據(jù)已知條件確定正比例函數(shù)的解析式,體會(huì)函數(shù)建模思想.
2.目標(biāo)解析。
達(dá)成目標(biāo)(1)的標(biāo)志是:通過對(duì)實(shí)際問題的分析,知道自變量和對(duì)應(yīng)函數(shù)成正比例的特征,能概括抽象出正比例函數(shù)的概念.
達(dá)成目標(biāo)(2)的標(biāo)志是:能根據(jù)實(shí)際問題中的已知條件確定變量間的正比例函數(shù)關(guān)系式,將實(shí)際問題抽象為函數(shù)模型,體會(huì)函數(shù)建模思想.
三、教學(xué)問題診斷分析。
正比例函數(shù)是是初中學(xué)生接觸到的第一種初等函數(shù),由于函數(shù)概念比較抽象,學(xué)生對(duì)函數(shù)基本概念理解未必深刻,在對(duì)實(shí)際問題進(jìn)行分析過程中,需進(jìn)一步強(qiáng)化對(duì)函數(shù)概念的理解:即實(shí)際問題的兩個(gè)變量中,當(dāng)一個(gè)變量變化時(shí),另一個(gè)變量隨著它的變化而變化,而且對(duì)于這個(gè)變量的每一個(gè)確定的值,另一個(gè)變量都有唯一確定的值與之對(duì)應(yīng);對(duì)正比例函數(shù)概念的理解關(guān)鍵是對(duì)正比例函數(shù)基本特征的認(rèn)識(shí),要通過大量實(shí)例分析,寫出變量間的函數(shù)關(guān)系式,觀察比較發(fā)現(xiàn)這些函數(shù)具有的共同特征,即函數(shù)與自變量的每一對(duì)對(duì)應(yīng)值的比值一定,都等于自變量前的常數(shù),這些函數(shù)都是常數(shù)與自變量的積的形式,再根據(jù)共同特征抽象出正比例函數(shù)的基本模型,歸納得出正比例函數(shù)的概念.對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程學(xué)生有一定難度.
因此本節(jié)課的教學(xué)難點(diǎn)是:對(duì)正比例函數(shù)基本特征的認(rèn)識(shí)和正比例函數(shù)概念的抽象歸納過程.
四、教學(xué)過程設(shè)計(jì)。
1.情境引入,初步感知。
引言。
上一節(jié)我們已經(jīng)學(xué)習(xí)了關(guān)于函數(shù)的最基礎(chǔ)的知識(shí),知道了變量與函數(shù)、函數(shù)的圖象及函數(shù)的三種表示方法,從這節(jié)課開始,我們將重點(diǎn)研究一種最基本的具體函數(shù)——一次函數(shù),本節(jié)課先研究特殊的一次函數(shù)——正比例函數(shù).
問題12011年開始運(yùn)營的京滬高速鐵路全長(zhǎng)1318km.設(shè)列車的平均速度為300km/h.考慮以下問題:
師生活動(dòng):教師引導(dǎo)學(xué)生分析問題中的數(shù)量關(guān)系,這是典型的行程問題,數(shù)量關(guān)系是學(xué)生熟悉的“路程=速度×?xí)r間”.
設(shè)計(jì)意圖:讓學(xué)生真切感受數(shù)學(xué)與實(shí)際的聯(lián)系,即數(shù)學(xué)理論來源于實(shí)際又服務(wù)于實(shí)際.幫助學(xué)生逐步提高將實(shí)際問題抽象為函數(shù)模型的能力,初步體會(huì)函數(shù)建模思想.
設(shè)計(jì)意圖:由于自變量t是列車運(yùn)行時(shí)間,作為實(shí)際問題,自變量的取值是受限制的,應(yīng)對(duì)其取值范圍作出說明.
對(duì)問題(2)的分析解答過程讓學(xué)生回答下列問題:
追問1這個(gè)問題中兩個(gè)變量之間的對(duì)應(yīng)關(guān)系是函數(shù)關(guān)系嗎?如果是,試說明理由.
設(shè)計(jì)意圖:讓學(xué)生感受量與量之間的函數(shù)關(guān)系,體會(huì)函數(shù)關(guān)系蘊(yùn)涵在實(shí)際問題中,激發(fā)學(xué)生探究興趣.對(duì)理由的說明學(xué)生可能有障礙,此時(shí)教師要引導(dǎo)學(xué)生回顧函數(shù)概念的學(xué)習(xí)過程,用函數(shù)的概念來回答:?jiǎn)栴}中的兩個(gè)變量,當(dāng)其中的變量t變化時(shí),另一個(gè)變量y隨著t的變化而變化,并且對(duì)于變量t的每一個(gè)?定的值,另一個(gè)變量y都有唯一確定的值與之對(duì)應(yīng).
追問2請(qǐng)你寫出y與t之間的函數(shù)解析式,并分析解析式在結(jié)構(gòu)上是什么形式?
追問3對(duì)于自變量t和函數(shù)y的每一對(duì)對(duì)應(yīng)值,y與t的比值,
人教版八年級(jí)數(shù)學(xué)教案篇七
會(huì)應(yīng)用平方差公式進(jìn)行因式分解,發(fā)展學(xué)生推理能力.
2.過程與方法。
經(jīng)歷探索利用平方差公式進(jìn)行因式分解的過程,發(fā)展學(xué)生的逆向思維,感受數(shù)學(xué)知識(shí)的完整性.
3.情感、態(tài)度與價(jià)值觀。
培養(yǎng)學(xué)生良好的互動(dòng)交流的習(xí)慣,體會(huì)數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值.
重、難點(diǎn)與關(guān)鍵。
1.重點(diǎn):利用平方差公式分解因式.
2.難點(diǎn):領(lǐng)會(huì)因式分解的解題步驟和分解因式的徹底性.
3.關(guān)鍵:應(yīng)用逆向思維的方向,演繹出平方差公式,對(duì)公式的應(yīng)用首先要注意其特征,其次要做好式的變形,把問題轉(zhuǎn)化成能夠應(yīng)用公式的方面上來.
教學(xué)方法。
采用“問題解決”的教學(xué)方法,讓學(xué)生在問題的牽引下,推進(jìn)自己的思維.
教學(xué)過程。
一、觀察探討,體驗(yàn)新知。
【問題牽引】。
請(qǐng)同學(xué)們計(jì)算下列各式.
(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).
【學(xué)生活動(dòng)】動(dòng)筆計(jì)算出上面的兩道題,并踴躍上臺(tái)板演.
(1)(a+5)(a-5)=a2-52=a2-25;。
(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.
【教師活動(dòng)】引導(dǎo)學(xué)生完成下面的兩道題目,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.
1.分解因式:a2-25;2.分解因式16m2-9n.
【學(xué)生活動(dòng)】從逆向思維入手,很快得到下面答案:
(1)a2-25=a2-52=(a+5)(a-5).
(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).
【教師活動(dòng)】引導(dǎo)學(xué)生完成a2-b2=(a+b)(a-b)的同時(shí),導(dǎo)出課題:用平方差公式因式分解.
平方差公式:a2-b2=(a+b)(a-b).
評(píng)析:平方差公式中的字母a、b,教學(xué)中還要強(qiáng)調(diào)一下,可以表示數(shù)、含字母的代數(shù)式(單項(xiàng)式、多項(xiàng)式).
二、范例學(xué)習(xí),應(yīng)用所學(xué)。
【例1】把下列各式分解因式:(投影顯示或板書)。
(1)x2-9y2;(2)16x4-y4;。
(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;。
(5)m2(16x-y)+n2(y-16x).
【思路點(diǎn)撥】在觀察中發(fā)現(xiàn)1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解.
【教師活動(dòng)】啟發(fā)學(xué)生從平方差公式的角度進(jìn)行因式分解,請(qǐng)5位學(xué)生上講臺(tái)板演.
【學(xué)生活動(dòng)】分四人小組,合作探究.
解:(1)x2-9y2=(x+3y)(x-3y);。
(5)m2(16x-y)+n2(y-16x)。
=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).
人教版八年級(jí)數(shù)學(xué)教案篇八
11.如圖,圖中的曲線表示小華星期天騎自行車外出離家的距離與時(shí)間的關(guān)系,小華八點(diǎn)離開家,十四點(diǎn)回到家,根據(jù)這個(gè)曲線圖,請(qǐng)回答下列問題:
(1)到達(dá)離家最遠(yuǎn)的地方是幾點(diǎn)?離家多遠(yuǎn)?
(2)何時(shí)開始第一次休息?休息多長(zhǎng)時(shí)間?
(3)小華在往返全程中,在什么時(shí)間范圍內(nèi)平均速度最快?最快速度是多少?
(4)小華何時(shí)離家21千米?(寫出計(jì)算過程)。
人教版八年級(jí)數(shù)學(xué)教案篇九
原式變形后,利用完全平方公式變形,計(jì)算即可得到結(jié)果.
此題考查了因式分解的應(yīng)用,熟練掌握平方差公式及完全平方公式是解本題的關(guān)鍵.
22.已知等式配方后,利用非負(fù)數(shù)的性質(zhì)求出a與b的值,即可確定出三角形周長(zhǎng).
此題考查了因式分解的應(yīng)用,熟練掌握完全平方公式是解本題的關(guān)鍵.
23.原式利用平方差公式分解得到結(jié)果,即可做出判斷.
此題考查了因式分解的應(yīng)用,熟練掌握平方差公式是解本題的關(guān)鍵.
24.本題考查了分式的化簡(jiǎn)求值,解答此題的關(guān)鍵是把分式化到最簡(jiǎn),然后代值計(jì)算.先將分式的分母分解因式,再約分,然后將已知變形為代入原式即可求解.
人教版八年級(jí)數(shù)學(xué)教案篇十
2.“六?一”兒童節(jié)前,某玩具商店根據(jù)市場(chǎng)調(diào)查,用2500元購進(jìn)一批兒童玩具,上市后很快脫銷,接著又用4500元購進(jìn)第二批這種玩具,所購數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了10元.
(1)求第一批玩具每套的進(jìn)價(jià)是多少元?
人教版八年級(jí)數(shù)學(xué)教案篇十一
因式分解是第九章的難點(diǎn)。學(xué)生初學(xué)因式分解時(shí)往往要與乘法運(yùn)算混淆。原因主要是概念不清。
在教學(xué)時(shí),因式分解與乘法的區(qū)別是通過把等號(hào)兩邊的式子互相轉(zhuǎn)換位置而直觀得出。對(duì)于因式分解的方法,學(xué)生可通過自己的一系列練習(xí)實(shí)踐去體會(huì)。故不需要在開頭引入的地方多加鋪墊,浪費(fèi)了一定的時(shí)間。
在因式分解的幾種方法中,提取公因式法師最基本的的方法,學(xué)生也很容易掌握。但在一些綜合運(yùn)用的題目中,學(xué)生總會(huì)易忘記先觀察是否有公因式,而直接想著運(yùn)用公式法分解。這樣直接導(dǎo)致有些題目分解錯(cuò)誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強(qiáng)。其實(shí)公式法分解因式。學(xué)生比較會(huì)將平方差和完全平方式混淆。這是對(duì)公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進(jìn)行區(qū)分。如果是兩項(xiàng)的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項(xiàng)則優(yōu)先考慮完全平方式進(jìn)行因式分解。
在復(fù)習(xí)課上以上存在的一些問題還要重點(diǎn)突出講解。幫助學(xué)生跟深刻的去認(rèn)識(shí)因式分解。
人教版八年級(jí)數(shù)學(xué)教案篇十二
1.因式分解:把一個(gè)多項(xiàng)式化為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”。
3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);。
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事項(xiàng):
(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;
(2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式。
人教版八年級(jí)數(shù)學(xué)教案篇十三
教法:
2、講練結(jié)合法:在例題教學(xué)中,引導(dǎo)學(xué)生閱讀,與平方根進(jìn)行類比,獲得解決問題的方法后配以精講,并進(jìn)行分層練習(xí),培養(yǎng)學(xué)生的閱讀習(xí)慣和規(guī)范的解題格式。
學(xué)法:
1、類比的方法通過觀察、類比,使學(xué)生感悟二次根式的模型,形成有效的學(xué)習(xí)策略。
2、閱讀的方法讓學(xué)生閱讀教材及材料,體驗(yàn)一定的閱讀方法,提高閱讀能力。
3、分組討論法將自己的意見在小組內(nèi)交換,達(dá)到取長(zhǎng)補(bǔ)短,體驗(yàn)學(xué)習(xí)活動(dòng)中的交流與合作。
4、練習(xí)法采用不同的練習(xí)法,鞏固所學(xué)的知識(shí);利用教材進(jìn)行自檢,小組內(nèi)進(jìn)行他檢,提高學(xué)生的素質(zhì)。
人教版八年級(jí)數(shù)學(xué)教案篇十四
p7例2.填空:
[分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變.
p11例3.約分:
[分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變.所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式.
p11例4.通分:
[分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母.
人教版八年級(jí)數(shù)學(xué)教案篇十五
1.因式分解:把一個(gè)多項(xiàng)式化()為幾個(gè)整式的積的形式,叫做把這個(gè)多項(xiàng)式因式分解;注意:因式分解與乘法是相反的兩個(gè)轉(zhuǎn)化。
2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”。
3.公因式的確定:系數(shù)的公約數(shù)?相同因式的最低次冪。
注意公式:a+b=b+a;a-b=-(b-a);(a-b)2=(b-a)2;(a-b)3=-(b-a)3。
4.因式分解的公式:
(1)平方差公式:a2-b2=(a+b)(a-b);。
(2)完全平方公式:a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.
5.因式分解的注意事項(xiàng):
(1)選擇因式分解方法的一般次序是:一提取、二公式、三分組、四十字;
(2)使用因式分解公式時(shí)要特別注意公式中的字母都具有整體性;
(3)因式分解的最后結(jié)果要求分解到每一個(gè)因式都不能分解為止;
(4)因式分解的最后結(jié)果要求每一個(gè)因式的首項(xiàng)符號(hào)為正;
(5)因式分解的最后結(jié)果要求加以整理;
(6)因式分解的最后結(jié)果要求相同因式寫成乘方的形式。