總結(jié)應(yīng)該具備針對性和實(shí)用性,旨在改善現(xiàn)狀和尋找更好的解決方案。寫總結(jié)時(shí)要注意語言簡練、準(zhǔn)確,避免使用太多的廢話和修辭手法。小編為大家準(zhǔn)備了一些總結(jié)寫作的實(shí)例和模板,希望對大家能有所幫助。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇一
1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。
3、對于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡稱這個(gè)不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號的方向改變。
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。
5、一元一次不等式組的解法。
1.分別求出不等式組中各個(gè)不等式的解集。
2.利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇二
主要是考函數(shù)和導(dǎo)數(shù),因?yàn)檫@是整個(gè)高中階段中最核心的部分,這部分里還重點(diǎn)考察兩個(gè)方面:第一個(gè)函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點(diǎn)考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個(gè)分布重點(diǎn)還包含兩個(gè)分析。
對于這部分知識重點(diǎn)考察三個(gè)方面:是劃減與求值,第一,重點(diǎn)掌握公式和五組基本公式;第二,掌握三角函數(shù)的圖像和性質(zhì),這里重點(diǎn)掌握正弦函數(shù)和余弦函數(shù)的性質(zhì);第三,正弦定理和余弦定理來解三角形,這方面難度并不大。
數(shù)列這個(gè)板塊,重點(diǎn)考兩個(gè)方面:一個(gè)通項(xiàng);一個(gè)是求和。
在里面重點(diǎn)考察兩個(gè)方面:一個(gè)是證明;一個(gè)是計(jì)算。
概率和統(tǒng)計(jì)主要屬于數(shù)學(xué)應(yīng)用問題的范疇,需要掌握幾個(gè)方面:……等可能的概率;……事件;獨(dú)立事件和獨(dú)立重復(fù)事件發(fā)生的概率。
這部分內(nèi)容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關(guān)系,要掌握它的通法;第二類動點(diǎn)問題;第三類是弦長問題;第四類是對稱問題;第五類重點(diǎn)問題,這類題往往覺得有思路卻沒有一個(gè)清晰的答案,但需要要掌握比較好的算法,來提高做題的準(zhǔn)確度。
同學(xué)們在最后的備考復(fù)習(xí)中,還應(yīng)該把重點(diǎn)放在不等式計(jì)算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時(shí)多做些壓軸題真題,爭取能解題就解題,能思考就思考。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇三
1、三角形中的動點(diǎn)問題:動點(diǎn)沿三角形的邊運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
2、四邊形中的動點(diǎn)問題:動點(diǎn)沿四邊形的邊運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
3、圓中的動點(diǎn)問題:動點(diǎn)沿圓周運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
4、直線、雙曲線、拋物線中的動點(diǎn)問題:動點(diǎn)沿直線、雙曲線、拋物線運(yùn)動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.
1、線段與多邊形的運(yùn)動圖形問題:把一條線段沿一定方向運(yùn)動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
2、多邊形與多邊形的運(yùn)動圖形問題:把一個(gè)三角形或四邊形沿一定方向運(yùn)動經(jīng)過另一個(gè)多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
3、多邊形與圓的運(yùn)動圖形問題:把一個(gè)圓沿一定方向運(yùn)動經(jīng)過一個(gè)三角形或四邊形,或把一個(gè)三角形或四邊形沿一定方向運(yùn)動經(jīng)過一個(gè)圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.
1、三角形中的動點(diǎn)問題:動點(diǎn)沿三角形的邊運(yùn)動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.
2、四邊形中的動點(diǎn)問題:動點(diǎn)沿四邊形的邊運(yùn)動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.
3、圓中的動點(diǎn)問題:動點(diǎn)沿圓周運(yùn)動,探究構(gòu)成的新圖形的邊角等關(guān)系.
4、直線、雙曲線、拋物線中的動點(diǎn)問題:動點(diǎn)沿直線、雙曲線、拋物線運(yùn)動,探究是否存在動點(diǎn)構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.
本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.
1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.
2、求出每段的解析式.
3、由每段的解析式確定每段圖象的形狀.
1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.
2、自變量變化函數(shù)值也變化的增減變化情況.
3、函數(shù)圖象的最低點(diǎn)和最高點(diǎn).
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇四
含義:
計(jì)量很重的物品或大宗物品的質(zhì)量,通常用噸做單位,噸用符號t表示。
舉例:1袋大米約重10千克,100袋大米約重1000千克,也就是1噸。
單位換算:
1噸=1000千克。
2噸=千克。
方法分析:
1噸=1000千克,2噸是2個(gè)1噸,就是2個(gè)1000千克,是2000千克,即2噸=2000千克。
方法歸納:
把較大的質(zhì)量單位換算成相鄰的較小的質(zhì)量單位時(shí),就是在所換算數(shù)的末尾添上3個(gè)0,把較小的質(zhì)量單位換算成相鄰的較大的質(zhì)量單位時(shí),就是在所換算數(shù)的末尾去掉3個(gè)0。
生活中噸的應(yīng)用:
噸的確是個(gè)比千克重的多的單位,那么,在計(jì)量較重的或大宗物品的質(zhì)量時(shí),通常用噸作單位?例如“一列貨車每節(jié)車廂的載重量是50噸,一般一輛貨車大約有30—50節(jié)車廂,也就是說可以運(yùn)送200噸左右的貨物。實(shí)際上,生活中很多物品的質(zhì)量是用噸來作單位的。比如:嫦娥一號起飛重量為2。35噸;空集裝箱本身的重量在2噸—5噸;亞洲象平均重3—4噸,非洲象平均五到六噸左右等等。
【學(xué)習(xí)方法】。
第一、加強(qiáng)小學(xué)三年級學(xué)生運(yùn)用“數(shù)概念”的能力培養(yǎng)。
有不少小學(xué)數(shù)學(xué)的教學(xué)中,常只重算法,忽視數(shù)概念的掌握和算理的理解。因而只能機(jī)械地應(yīng)用學(xué)過的東西,或簡單地模仿做過的例題,不能在變化了情況下遷移;或者只知道一些定義,而不能全面掌握屬于這一概念的東西。
第二、重視和加強(qiáng)發(fā)展小學(xué)三年級學(xué)生“空間關(guān)系”的知覺能力。
數(shù)和形是不可分開的。因此,學(xué)生掌握空間關(guān)系的知覺能力也是小學(xué)數(shù)學(xué)能力的重要組成部分。例如三年級下冊如用圓圈圖(韋恩圖)向?qū)W生直觀的滲透集合概念。讓他們感知圈內(nèi)的物體具有某種共同的屬性,可以看作一個(gè)整體,這個(gè)整體就是一個(gè)集合。
第三、觀察活動:
所謂觀察是指學(xué)生對客觀事物或某種現(xiàn)象的仔細(xì)察看,因而是一種有意注意。培養(yǎng)的途徑是:教師提供的“客觀事物或某種現(xiàn)象”特征有序、背景鮮明,而且要給出一些觀察的思考題。這樣有助于學(xué)生明確觀察目標(biāo),進(jìn)而使他們邊觀察,邊思考,邊議論,邊作觀察記錄,以發(fā)現(xiàn)數(shù)學(xué)規(guī)律、本質(zhì)。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇五
叫做多項(xiàng)式的項(xiàng);的項(xiàng)叫做常數(shù)項(xiàng)。
5、多項(xiàng)式的次數(shù):;
6、整式:;
7、同類項(xiàng):;
8、把多項(xiàng)式中的同類項(xiàng)合并成一項(xiàng),叫做合并同類項(xiàng);
合并同類項(xiàng)后,所得項(xiàng)的系數(shù)是合并同前各同類項(xiàng)的系數(shù)的和,且字母部分不變。
(2)如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項(xiàng)的符號與原來的符號相反
10、一般地,幾個(gè)整式相加減,如果有括號就先去括號,然后再合并同類項(xiàng)
第三章:一次方程(組)
一、方程的有關(guān)概念
1、方程的概念:
(1)含有未知數(shù)的等式叫方程。
(2)在一個(gè)方程中,只含有一個(gè)未知數(shù),并且未知數(shù)的指數(shù)是1,系數(shù)不為0,這樣的方程叫一元一次方程。
2、等式的基本性質(zhì):
(1)等式兩邊同時(shí)加上(或減去)同一個(gè)代數(shù)式,所得結(jié)果仍是等式。若a=b,則a+c=b+c或a–c=b–c。
二、解方程
1、移項(xiàng)的有關(guān)概念:
把方程中的某一項(xiàng)改變符號后,從方程的一邊移到另一邊,叫做移項(xiàng)。這個(gè)法則是根據(jù)等式的性質(zhì)1推出來的,是解方程的依據(jù)。把某一項(xiàng)從方程的左邊移到右邊或從右邊移到左邊,移動的項(xiàng)一定要變號。
2、解一元一次方程的步驟:
解一元一次方程的步驟
主要依據(jù)
1、去分母
等式的性質(zhì)2
2、去括號
去括號法則、乘法分配律
3、移項(xiàng)
等式的性質(zhì)1
4、合并同類項(xiàng)
合并同類項(xiàng)法則
5、系數(shù)化為1
等式的性質(zhì)2
6、檢驗(yàn)
3、二元一次方程組
(1)將二元一次方程用含有一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù);
(2)解二元一次方程組的指導(dǎo)思想是轉(zhuǎn)化的思想;
(3)解二元一次方程組的方法有:加減消元法;代入消元法;
二、列方程解應(yīng)用題
1、列方程解應(yīng)用題的一般步驟:
(1)將實(shí)際問題抽象成數(shù)學(xué)問題;
(2)分析問題中的已知量和未知量,找出等量關(guān)系;
(3)設(shè)未知數(shù),列出方程;
(4)解方程;
(5)檢驗(yàn)并作答。
2、一些實(shí)際問題中的規(guī)律和等量關(guān)系:
(1)幾種常用的面積公式:
梯形面積公式:s=,a,b為上下底邊長,h為梯形的高,s為梯形面積;
圓形的面積公式:,r為圓的半徑,s為圓的面積;
三角形面積公式:,a為三角形的一邊長,h為這一邊上的高,s為三角形的面積。
(2)幾種常用的周長公式:
長方形的周長:l=2(a+b),a,b為長方形的長和寬,l為周長。
正方形的周長:l=4a,a為正方形的邊長,l為周長。
圓:l=2πr,r為半徑,l為周長。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇六
函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
出自 m.zgxlcd.com
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)。
概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運(yùn)用程度。
解析幾何。高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點(diǎn),扎實(shí)的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計(jì)數(shù)原理與分步計(jì)數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計(jì)算公式,并能用它解決一些簡單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計(jì)算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
掌握二項(xiàng)式定理和二項(xiàng)展開式的性質(zhì),并能用它們計(jì)算和證明一些簡單的問題。
了解隨機(jī)事件的發(fā)生存在著規(guī)律性和隨機(jī)事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計(jì)算一些等可能性事件的概率。
了解互斥事件、相互獨(dú)立事件的意義,會用互斥事件的概率加法公式與相互獨(dú)立事件的概率乘法公式計(jì)算一些事件的概率。
會計(jì)算事件在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇七
3、解決生活問題,如提的問題是“至少需要幾條船?”,用進(jìn)一法(用商加1)”,乘船、坐車、坐板凳等,讀懂題目再作答。
第二章――――方向與位置(認(rèn)識方向)。
1、地圖上的方向口訣:上北下南,左西右東;
辨認(rèn)方向時(shí)要畫方向標(biāo)。
“小豬在小馬的()方”,“小馬的()方是小豬”,是以小馬家為中心點(diǎn),畫出方位坐標(biāo),確定方向。
3、太陽早上從東邊升起,西邊落下;
指南針一頭指著(),一頭指著()。小明早上面向太陽時(shí),他的前面是(),后面是(),左面是(),右面是()。
4、當(dāng)吹東南風(fēng)時(shí),紅旗往()飄;
吹西北風(fēng)時(shí),紅旗往()飄。
第三章――――生活中的大數(shù)(認(rèn)識10000以內(nèi)的數(shù))。
1、計(jì)數(shù)器上從右邊數(shù)起第一位是()位,第二位是()位,第三位是()位,第四位是()位,千位的左邊是()位,右邊是()位。
2、一個(gè)四位數(shù)最高位是()位,它的千位是5,個(gè)位是2,其他的數(shù)位是0,它是()。
3、在8536中,8在()位上,表示()。5在()位上,表示()。3在()位上,表示()。6在()位上,表示()。
4、由三個(gè)千,五個(gè)一組成的數(shù)是(),由9個(gè)一,兩個(gè)百和一個(gè)千組成的數(shù)是()。
5、讀數(shù)時(shí),要從高讀起,中間有一個(gè)或兩個(gè)0,都只讀一個(gè)0個(gè)“零”;
末尾不管有幾個(gè)“0”,都不讀;
寫數(shù),末尾不管有幾個(gè)0,都不讀。寫數(shù)時(shí),從高位寫起,按照數(shù)位順序表寫,中間或末尾哪一位上沒有數(shù),就寫“0”占位。
6、10個(gè)十是(),10個(gè)一百是(),10個(gè)一千是(),100個(gè)一百是()。10000里面有()個(gè)百,1000里面有()個(gè)十。
7、最大的三位數(shù)是(),最小的三位數(shù)是()。最大的四位數(shù)是(),最小的四位數(shù)是()。
8、比較大小時(shí),先比較位數(shù),位數(shù)多的數(shù)就大,位數(shù)少的數(shù)就小;
位數(shù)相同時(shí),從最高位開始比較,最高位上的數(shù)字相同的,就比下一位,直到比出大小。從大到小用“”,從小到大用“”。
3、長度單位比較大小,首先要觀察單位,換成統(tǒng)一的單位之后才能比較;
4、長度單位的加減法,米加米,分米加分米.......就是把相同的單位進(jìn)行加減。
第五章――――加與減1、口算整百加減整百時(shí),想成幾個(gè)百加減幾個(gè)百,加減整十?dāng)?shù)的算理也相同。
5、被減數(shù)-減數(shù)=差被減數(shù)=減數(shù)+差減數(shù)=被減數(shù)-差如:()-156=368(用156+368計(jì)算)。
7、減法的驗(yàn)算方法:(1)用被減數(shù)減去差,看結(jié)果是否等于減數(shù),(2)用減數(shù)加上差,看結(jié)果是否等于被減數(shù)。注意:運(yùn)算時(shí)不要抄錯(cuò)數(shù),也不要直接把驗(yàn)算結(jié)果抄上。
第六章――――認(rèn)識角1、每個(gè)角都是由1個(gè)頂點(diǎn)和2條邊組成;
2、按角的大小,將角分為銳角、直角、鈍角,所有的直角都相等,比直角小的是銳角,比直角大的是鈍角。要知道一個(gè)角是什么角,可以用三角板上的直角比一比。
4、正方形有四個(gè)直角,四條邊都相等;
長方形有四條邊,四個(gè)直角,長方形的對邊相等;
5、平行四邊形有四條邊,有2個(gè)銳角,2個(gè)鈍角,對邊相等,對角相等。
2、秒針走一小格是1秒,走一大格是5秒,走一圈是60秒,就是1分鐘;
3、分針走一小格是1分,走一大格是5分,走一圈是60分,也就是1小時(shí);
4、時(shí)針走一大格是1小時(shí),走一圈是12小時(shí);
5、時(shí)、分、秒相鄰單位的進(jìn)率是60;
1時(shí)=60分1分=60秒6、比較時(shí)間,首先要觀察,統(tǒng)一單位之后再比較大小。
第八章――――統(tǒng)計(jì)1、記錄并學(xué)會計(jì)算,誰多,誰少。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇八
1.下列幾種關(guān)于投影的說法不正確的是()。
a.平行投影的投影線是互相平行的。
b.中心投影的投影線是互相垂直的。
c.線段上的點(diǎn)在中心投影下仍然在線段上。
d.平行的直線在中心投影中不平行。
2.根據(jù)下列對于幾何結(jié)構(gòu)特征的描述,說出幾何體的名稱:
(1)由7個(gè)面圍成,其中兩個(gè)面是互相平行且全等的五邊形,其他面都是全等的矩形;。
(3)一個(gè)等腰直角三角形繞著底邊上所在的直線旋轉(zhuǎn)360度形成的封閉曲面所圍成的圖形.
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇九
2012考研數(shù)學(xué)大綱與去年一樣,科目所占比例中,高等數(shù)學(xué)所占比例不變,數(shù)學(xué)一,三中是56%,數(shù)學(xué)二中是78%。這就決定了考生在復(fù)習(xí)的時(shí)候應(yīng)該分配的精力與時(shí)間更多一些。而在這相對較多的時(shí)間與精力中,如果再能事半功倍,便為考研高分奠定了基礎(chǔ)。
高等數(shù)學(xué)的基本內(nèi)容可以四塊:一元函數(shù)微積分,多元函數(shù)微積分(主要是二元函數(shù)),無窮級數(shù)與常微分方程,向量代數(shù)與空間解析幾何(數(shù)一考)。前三塊是高等數(shù)學(xué)部分出題的重點(diǎn),第四塊雖然大綱中對數(shù)一的要求也寫了多半頁文字的規(guī)定,但從歷年數(shù)一真題中直接針對這一塊出題的很少。
那么在考前的這幾個(gè)月里,高等數(shù)學(xué)如何復(fù)習(xí)才能合到高分呢?
一、選擇合適的復(fù)習(xí)資料?,F(xiàn)在有很多考生手中的參考資料書許多,市面上一新出現(xiàn)一本考研的資料參考書就會去買,這對考生是不利的,因?yàn)榭忌鷽]有那么多的時(shí)間去把所有的參考資料看完,并且看完效果也不一定好,根據(jù)以上對高等數(shù)學(xué)內(nèi)容的分塊劃分,需要選擇適合自己的復(fù)習(xí)資料。資料的選擇要看其是否按考研大綱的要求編寫,看其對基本內(nèi)容的講述是否深入且易懂,看其層次性是否分明等等,如內(nèi)部資料《2011考研數(shù)學(xué)基本復(fù)習(xí)大全》,《2011考研數(shù)學(xué)考點(diǎn)題型與復(fù)習(xí)方法精講》相對來說就適合考生對基礎(chǔ)知識的鞏固及深入理解。
二、看書要擒賊先擒王。在看教材及輔導(dǎo)資料時(shí)要依三大塊分清重點(diǎn)、次重點(diǎn)、非重點(diǎn)。閱讀數(shù)學(xué)圖書與其他文藝社科類圖書有個(gè)區(qū)別,就是內(nèi)容沒有那么強(qiáng)的故事性,同時(shí)所述理論有一定抽象性,所以在看書時(shí)需要不斷思考其邏輯結(jié)構(gòu)。比如在看函數(shù)極限的性質(zhì)中的局部有界性時(shí),能夠聯(lián)系其在幾何上的表現(xiàn)來理解,并思考其實(shí)質(zhì)含義及應(yīng)用。三大塊內(nèi)容中,一元函數(shù)的微積分是基礎(chǔ),定義一元函數(shù)微積分的極限及高等數(shù)學(xué)的主要研究對象――函數(shù)及連續(xù)是基礎(chǔ)中的基礎(chǔ)。這個(gè)部分也是每年必定會出題考查的,必須引起注意。多元函數(shù)微積分,主要是二元函數(shù)微積分,這個(gè)部分大家需要記很多公式及解題捷徑。第三大塊的無窮級數(shù)與常微分方程部分的重點(diǎn)很容易把握,考點(diǎn)就那幾種,需要注意的是其與實(shí)際問題結(jié)合出題的情況。
三、看書的順序要與成效相結(jié)合。人在讀書的時(shí)候習(xí)慣于從頭至尾看,這對于每天都從頭開始的.人來說永遠(yuǎn)不能看到后面的內(nèi)容。在看數(shù)學(xué)教材或輔導(dǎo)書時(shí),最好每次看一個(gè)部分,下一次從接著的部分開始看下一部分。這樣每一次的內(nèi)容都自成一個(gè)體系,不至于這次看的時(shí)候花大量的時(shí)間做前后的銜接。還有呢,如果計(jì)劃高等數(shù)學(xué)復(fù)習(xí)三遍,第一遍的時(shí)候是從頭至尾,那么從現(xiàn)在開始就要從后往前復(fù)習(xí)了,最后一遍需要用來總體把握。
在考研這個(gè)大舞臺上,每個(gè)考生都在用不同的方式去演繹角色,但總有一種最特別的方法適合特別的你!
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十
相似比:相似多邊形對應(yīng)邊的比值。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長和面積。
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十一
先將總體中的所有單位按照某種特征或標(biāo)志(性別、年齡等)劃分成若干類型或?qū)哟?,然后再在各個(gè)類型或?qū)哟沃胁捎煤唵坞S機(jī)抽樣或系用抽樣的辦法抽取一個(gè)子樣本,最后,將這些子樣本合起來構(gòu)成總體的樣本。
兩種方法。
1、先以分層變量將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。
2、先以分層變量將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最后用系統(tǒng)抽樣的方法抽取樣本。
2、分層抽樣是把異質(zhì)性較強(qiáng)的總體分成一個(gè)個(gè)同質(zhì)性較強(qiáng)的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進(jìn)而代表總體。
分層標(biāo)準(zhǔn)。
(1)以調(diào)查所要分析和研究的主要變量或相關(guān)的變量作為分層的標(biāo)準(zhǔn)。
(2)以保證各層內(nèi)部同質(zhì)性強(qiáng)、各層之間異質(zhì)性強(qiáng)、突出總體內(nèi)在結(jié)構(gòu)的變量作為分層變量。
(3)以那些有明顯分層區(qū)分的變量作為分層變量。
分層的比例問題。
(1)按比例分層抽樣:根據(jù)各種類型或?qū)哟沃械膯挝粩?shù)目占總體單位數(shù)目的比重來抽取子樣本的方法。
(2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時(shí)采用該方法,主要是便于對不同層次的子總體進(jìn)行專門研究或進(jìn)行相互比較。如果要用樣本資料推斷總體時(shí),則需要先對各層的數(shù)據(jù)資料進(jìn)行加權(quán)處理,調(diào)整樣本中各層的比例,使數(shù)據(jù)恢復(fù)到總體中各層實(shí)際的比例結(jié)構(gòu)。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十二
都說興趣是最好的老師,最重要的是要對數(shù)學(xué)有興趣,如果厭煩它,是怎么也提不高的。
(二)、理解能力。
數(shù)學(xué)是理科,理解能力很重要,沒有理解能力,你的數(shù)學(xué)乃至所有理科的學(xué)習(xí)將舉步難行。而理解能力的培養(yǎng)很難,你必須嘗試去理解一些對你很難的哲學(xué)理論和相對抽象的數(shù)學(xué)模型。最簡單的培養(yǎng)也十分艱辛,需要做到對于一道中等難度的題,看到輔助線能在1分鐘以內(nèi)反應(yīng)出其做法。其次,對老師所講的題不僅要懂,而且還要揣摩老師做題時(shí)的具體心路歷程,這才是為什么很多人數(shù)學(xué)學(xué)得好的基礎(chǔ)能力。
(三)、勤奮。
我見過很多很努力但仍學(xué)不好理科的同學(xué)。數(shù)學(xué)考試的令人無語之處在于只要你認(rèn)真按老師的要求學(xué)習(xí)很容易及格,但要想考上145分靠老師的那點(diǎn)練習(xí)則遠(yuǎn)遠(yuǎn)不夠。即使是對于差生來說,學(xué)習(xí)仍然有簡單易行的方法。掌握正確的方法,才能勤奮有所獲。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十三
1、平面的基本性質(zhì):
公理1如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在這個(gè)平面內(nèi);
公理2過不在一條直線上的三點(diǎn),有且只有一個(gè)平面;
公理3如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。
2、空間點(diǎn)、直線、平面之間的位置關(guān)系:
直線與直線—平行、相交、異面;
直線與平面—平行、相交、直線屬于該平面(線在面內(nèi),最易忽視);
平面與平面—平行、相交。
3、異面直線:
平面外一點(diǎn)a與平面一點(diǎn)b的連線和平面內(nèi)不經(jīng)過點(diǎn)b的直線是異面直線(判定);
所成的角范圍(0,90)度(平移法,作平行線相交得到夾角或其補(bǔ)角);
兩條直線不是異面直線,則兩條直線平行或相交(反證);
異面直線不同在任何一個(gè)平面內(nèi)。
求異面直線所成的角:平移法,把異面問題轉(zhuǎn)化為相交直線的夾角
1、直線與平面平行(核心)
定義:直線和平面沒有公共點(diǎn)
判定:不在一個(gè)平面內(nèi)的一條直線和平面內(nèi)的一條直線平行,則該直線平行于此平面(由線線平行得出)
2、平面與平面平行
定義:兩個(gè)平面沒有公共點(diǎn)
判定:一個(gè)平面內(nèi)有兩條相交直線平行于另一個(gè)平面,則這兩個(gè)平面平行
性質(zhì):兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面;如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。
3、常利用三角形中位線、平行四邊形對邊、已知直線作一平面找其交線
1、直線與平面垂直
定義:直線與平面內(nèi)任意一條直線都垂直
判定:如果一條直線與一個(gè)平面內(nèi)的兩條相交的直線都垂直,則該直線與此平面垂直
性質(zhì):垂直于同一直線的兩平面平行
推論:如果在兩條平行直線中,有一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面
2、平面與平面垂直
定義:兩個(gè)平面所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(二面角的平面角:以二面角的棱上任一點(diǎn)為端點(diǎn),在兩個(gè)半平面內(nèi)分別作垂直于棱的兩條射線所成的角)
判定:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直
性質(zhì):兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十四
1、配方法;所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成—個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。
2、因式分解法,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,中學(xué)課本上介紹有提取公因式法、公式法、分組分解法、十字相乘法等都是因式分解的常用手段。
3、換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個(gè)部分或改造原來的式子,使它簡化,使問題易于解決。
4、構(gòu)造法;在解題時(shí),我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起—座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
5、反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為兩種:一種是相反的結(jié)論只有一種,另一種是相反的結(jié)論有無數(shù)種。前者需要把相反的結(jié)論推翻,后者只要舉出一個(gè)反例,就達(dá)到了證明的目的。
學(xué)生數(shù)學(xué)知識點(diǎn)總結(jié)篇十五
(1)在具體情境中,了解隨機(jī)事件發(fā)生的不確定性和頻率的穩(wěn)定性,進(jìn)一步了解概率的意義以及頻率與概率的區(qū)別。
(2)通過實(shí)例,了解兩個(gè)互斥事件的概率加法公式。
(3)通過實(shí)例,理解古典概型及其概率計(jì)算公式,會用列舉法計(jì)算一些隨機(jī)事件所含的基本事件數(shù)及事件發(fā)生的概率。
(4)了解隨機(jī)數(shù)的意義,能運(yùn)用模擬方法(包括計(jì)算器產(chǎn)生隨機(jī)數(shù)來進(jìn)行模擬)估計(jì)概率,初步體會幾何概型的意義(參見例3)。
(5)通過閱讀材料,了解人類認(rèn)識隨機(jī)現(xiàn)象的過程。