作為一名教職工,就不得不需要編寫教案,編寫教案有利于我們科學、合理地支配課堂時間。怎樣寫教案才更能起到其作用呢?教案應該怎么制定呢?以下我給大家整理了一些優(yōu)質的教案范文,希望對大家能夠有所幫助。
初中數(shù)學教案篇一
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質;
2、利用反比例函數(shù)的圖象解決有關問題。
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質;
2、探索反比例函數(shù)的圖象的性質,體會用數(shù)形結合思想解數(shù)學問題。
一、創(chuàng)設情境
上節(jié)的練習中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應值:
2、描點:用表里各組對應值作為點的坐標,在直角坐標系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學生試一試:畫出反比例函數(shù)的圖象(學生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學生討論、交流以下問題,并將討論、交流的結果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內?由什么確定?
3、聯(lián)系一次函數(shù)的性質,你能否總結出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質:
(1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關于原點成中心對稱。
以上兩點性質在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
(1)求這個函數(shù)的解析式,并畫出圖象;
(2)若點a(—5,m)在圖象上,則點a關于兩坐標軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
(2)由點a在反比例函數(shù)的圖象上,易求出m的值,再驗證點a關于兩坐標軸和原點的對稱點是否在圖象上。
解(1)設:反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
(2)點a(—5,m)在反比例函數(shù)圖象上,所以,
點a的坐標為。
點a關于x軸的對稱點不在這個圖象上;
點a關于y軸的對稱點不在這個圖象上;
點a關于原點的對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
(2)它的圖象在第幾象限內?在各象限內,y隨x的增大如何變化?
(3)當—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
(2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內,在各象限內,y隨x的增大而增大。
(3)因為在第個象限內,y隨x的增大而增大,
所以當x=時,y最大值=;
當x=—3時,y最小值=。
所以當—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
(1)寫出用高表示長的函數(shù)關系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
(3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內的一個分支。
四、交流反思
本節(jié)課學習了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質:
(1)當k>0時,函數(shù)的圖象在第一、三象限,在每個象限內,曲線從左向右下降,也就是在每個象限內y隨x的增加而減少;
(2)當k<0時,函數(shù)的圖象在第二、四象限,在每個象限內,曲線從左向右上升,也就是在每個象限內y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標系中畫出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當x=3時,y=8,求:
(1)y和x的函數(shù)關系式;
(2)當時,y的值;
(3)當x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內,y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點a(2,—m)和b(n,2n),求:
(1)m和n的值;
(2)若圖象上有兩點p1(x1,y1)和p2(x2,y2),且x1<0
初中數(shù)學教案篇二
現(xiàn)代教學論研究指出,從本質上講,學生學習的根本原因是問題。在數(shù)學課堂教學中,教師可根據(jù)不同的教學內容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環(huán)節(jié)中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
著名數(shù)學家費賴登塔爾認為:“數(shù)學源于現(xiàn)實又寓于現(xiàn)實,數(shù)學教學應從學生所接觸的客觀實際中提出問題,然后升華為數(shù)學概念、運算法則或數(shù)學思想。”這一觀念既反映了數(shù)學的本質,同時說明了在數(shù)學課堂教學中創(chuàng)設問題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學導入時,我首先出示了一周來本班的積分統(tǒng)計表(表中的得分用正數(shù)表示,失分用負數(shù)表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發(fā)現(xiàn)大多數(shù)同學能用“抵消”的方法統(tǒng)計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學生不知道該怎樣算。當學生產(chǎn)生這樣的認知沖突時我便引入了本節(jié)課要學習的內容,最后我用表中的數(shù)據(jù)分成了幾種類型,如正數(shù)加正數(shù)、負數(shù)加負數(shù)、正數(shù)加負數(shù)等,展開新知學習,教學效果較以前有明顯改觀。
本節(jié)課成功之處在于:
(1)導入的情境問題貼近學生的現(xiàn)實,調動了學生的積極性。
(2)情境問題為后面的教學埋下了伏筆,引發(fā)了學生的認知沖突。當然,情境問題的創(chuàng)設不當,會直接影響教學。比如,在《函數(shù)》一節(jié)的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發(fā)現(xiàn)學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數(shù)問題,只因為農(nóng)村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現(xiàn)“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數(shù)學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節(jié)的教學重點就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認識和理解函數(shù)的性質。而作圖過程又是一個難點問題,要從所畫的圖像中發(fā)現(xiàn)并歸納性質,首先得畫出較準確的函數(shù)圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:
(1)根據(jù)你畫的圖像,給自變量x任取一個值,函數(shù)y有唯一的值與它對應嗎?
(2)自變量x的范圍是什么?
(3)在0
(4)部分同學經(jīng)過對x的小范圍內的取值、描點與連線之后觀察到了所畫的圖像是曲線型的,但是還有部分學生就是體驗不到這種形狀。在這種情況下,我用計算機演示,當所描出的點比較密集時所連的線是曲線而不是直線段,這樣才消除了學生的一些錯誤認識。在隨后的觀察圖像歸納性質的探索與交流活動中,學生樂于探索,主動交流,積極發(fā)表自己的想法,根據(jù)圖像歸納出了好幾條性質。這樣,不但使重點得以突出、難點得到突破,而且發(fā)展了學生的思維。
3、例題或課堂練習中的問題設計
例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數(shù)學學習效果和培養(yǎng)學生思維的有效手段之一。數(shù)學課堂教學中,教師通過優(yōu)選例題,精心設計層次分明的練習,能夠讓學生以積極的態(tài)度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數(shù)的圖像與性質》一節(jié)的教學中設計了一道這樣的問題:已知a(-2,y1)、b(-1,y2)、c(2,y3)三點都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若d(a,y1)、e(b,y2)、f(c,y3)三點也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a
0時,反比例函數(shù)y隨x的增大而減小,而a
y3?!睂W生b回答:“我們組用特殊值檢驗得出y2
y1>y2?!睂W生c回答:“我們組根據(jù)反比例函數(shù)的圖像和性質得到:當k>0時,在每個象限內,函數(shù)y的值隨自變量x的增大而減小,由此可得y3>y1>y2?!苯?jīng)過對以上不同做法的比較和鑒別,學生對反比例函數(shù)圖像的性質中“在每一個象限內”這一條件有了徹底的理解??梢?,在數(shù)學課堂教學中,教師精心設計例題或練習問題,使學生通過對問題的解決,既鞏固了知識,又培養(yǎng)了運用知識解決實際問題的能力,體驗到了解決問題后的快樂感和成就感。
4、在學習反思中的問題設計初中學生學習數(shù)學的方法相對欠缺,學生“重結論,輕過程”的現(xiàn)象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發(fā)現(xiàn)學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格:
通過引導學生對錯因徹底分析與校正,學生明白了產(chǎn)生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發(fā)現(xiàn),學生確實重視了錯誤,效果明顯有所好轉。
總之,在數(shù)學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。
初中數(shù)學教案篇三
(一)知識教學點
1.使學生能利用公式解決簡單的實際問題.
2.使學生理解公式與代數(shù)式的關系.
(二)能力訓練點
1.利用數(shù)學公式解決實際問題的能力.
2.利用已知的公式推導新公式的能力.
(三)德育滲透點
數(shù)學來源于生產(chǎn)實踐,又反過來服務于生產(chǎn)實踐.
(四)美育滲透點
數(shù)學公式是用簡潔的數(shù)學形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學方法,從而使學生感受到數(shù)學公式的簡潔美.
1.數(shù)學方法:引導發(fā)現(xiàn)法,以復習提問小學里學過的公式為基礎、突破難點
2.學生學法:觀察→分析→推導→計算
1.重點:利用舊公式推導出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
1課時
投影儀,自制膠片。
教者投影顯示推導梯形面積計算公式的圖形,學生思考,師生共同完成例1解答;教者啟發(fā)學生求圖形的面積,師生總結求圖形面積的公式.
(一)創(chuàng)設情景,復習引入
師:同學們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應用,公式就是其中之一,我們在小學里學過許多公式,請大家回憶一下,我們已經(jīng)學過哪些公式,教法說明,讓學生一開始就參與課堂教學,使學生在后面利用公式計算感到不生疏.
在學生說出幾個公式后,師提出本節(jié)課我們應在小學學習的基礎上,研究如何運用公式解決實際問題.
板書:公式
師:小學里學過哪些面積公式?
板書:s=ah
(出示投影1)。解釋三角形,梯形面積公式
【教法說明】讓學生感知用割補法求圖形的面積。
初中數(shù)學教案篇四
學生通過上節(jié)課的學習,已經(jīng)掌握了如何用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段。同時在學習中學生已經(jīng)初步理解了作圖的步驟,具備了基本的作圖能力,并能簡單的表達作圖過程,為本節(jié)課的學習奠定了良好的知識基礎。同時在以前的數(shù)學學習中學生已經(jīng)經(jīng)歷了很多合作學習的過程,具有了一定的合作學習的經(jīng)驗,具備了一定的合作與交流的能力。
教科書基于學生在上節(jié)課學習了如何作一條線段等于已知線段,并積累了一定的活動經(jīng)驗,提出本節(jié)課的主要教學任務是:會用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。為此,本節(jié)課的教學目標是:
1、能按照作圖語言來完成作圖動作,能用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。
2、能利用尺規(guī)作角的和、差、倍。
3、能夠通過尺規(guī)設計并繪制簡單的圖案。
4、在尺規(guī)作圖過程當中,積累數(shù)學活動經(jīng)驗,培養(yǎng)動手能力和邏輯分析能力。
1、回顧與思考
(1)怎樣利用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段?
(2)練習:已知線段a,b,c,作一條線段m,使得m=a+b—c
通過回顧上節(jié)課學習的用尺規(guī)作線段,既達到了復習鞏固,反饋落實的目的,同時熟練尺規(guī)的使用,積累活動經(jīng)驗,也為后面學習用尺規(guī)作角起到了鋪墊的作用。
2、情境引入,探索發(fā)現(xiàn)
活動內容:如圖2
初中數(shù)學教案篇五
1筆寡生掌握代數(shù)式的值的概念,能用具體數(shù)值代替代數(shù)式中的字母,求出代數(shù)式的值;
2迸嘌學生準確地運算能力,并適當?shù)貪B透特殊與一般的辨證關系的思想。
重點和難點:正確地求出代數(shù)式的值
1庇么數(shù)式表示:(投影)
(1)a與b的和的平方;(2)a,b兩數(shù)的平方和;
(3)a與b的和的50%
2庇糜镅孕鶚齟數(shù)式2n+10的意義
3倍雜詰2題中的代數(shù)式2n+10,可否編成一道實際問題呢?(在學生回答的基礎上,教師打投影)
某學校為了開展體育活動,要添置一批排球,每班配2個,學校另外留10個,如果這個學校共有n個班,總共需多少個排球?
若學校有15個班(即n=15),則添置排球總數(shù)為多少個?若有20個班呢?
最后,教師根據(jù)學生的回答情況,指出:需要添置排球總數(shù),是隨著班數(shù)的確定而確定的;當班數(shù)n取不同的數(shù)值時,代數(shù)式2n+10的計算結果也不同,顯然,當n=15時,代數(shù)式的值是40;當n=20時,代數(shù)式的值是50蔽頤墻上面計算的結果40和50,稱為代數(shù)式2n+10當n=15和n=20時的值閉餼褪潛窘誑撾頤墻要學習研究的內容
1庇檬值代替代數(shù)式里的字母,按代數(shù)式指明的運算,計算后所得的結果,叫做代數(shù)式的值
2苯岷仙鮮隼題,提出如下幾個問題:
(1)求代數(shù)式2x+10的值,必須給出什么條件?
(2)代數(shù)式的值是由什么值的確定而確定的?
當教師引導學生說出:“代數(shù)式的值是由代數(shù)式里字母的取值的確定而確定的”之后,可用圖示幫助學生加深印象
然后,教師指出:只要代數(shù)式里的字母給定一個確定的值,代數(shù)式就有唯一確定的值與它對應
(3)求代數(shù)式的值可以分為幾步呢?在“代入”這一步,應注意什么呢?
下面教師結合例題來引導學生歸納,概括出上述問題的答案(教師板書例題時,應注意格式規(guī)范化)
例1當x=7,y=4,z=0時,求代數(shù)式x(2x-y+3z)的值
解:當x=7,y=4,z=0時,
x(2x-y+3z)=7×(2×7-4+3×0)
=7×(14-4)
=70
注意:如果代數(shù)式中省略乘號,代入后需添上乘號
例2根據(jù)下面a,b的值,求代數(shù)式a2-的值
(1)a=4,b=12,(2)a=1,b=1
解:(1)當a=4,b=12時,
a2-=42-=16-3=13;
(2)當a=1,b=1時,
a2-=-=
注意(1)如果字母取值是分數(shù),作乘方運算時要加括號;
(2)注意書寫格式,“當……時”的字樣不要丟;
(3)代數(shù)式里的字母可取不同的值,但是所取的值不應當使代數(shù)式或代數(shù)式所表示的數(shù)量關系失去實際意義,如此例中a不能為零,在代數(shù)式2n+10中,n是代數(shù)班的個數(shù),n不能取分數(shù)最后,請學生總結出求代數(shù)值的步驟:①代入數(shù)值②計算結果
1(1)當x=2時,求代數(shù)式x2-1的值;
(2)當x=,y=時,求代數(shù)式x(x-y)的值
2鋇盿=,b=時,求下列代數(shù)式的值:
(1)(a+b)2;(2)(a-b)2
3鋇眡=5,y=3時,求代數(shù)式的值
答案:1.(1)3;(2);2.(1);(2);3.。
首先,請學生回答下面問題:
1北窘誑窩習了哪些內容?
2鼻蟠數(shù)式的值應分哪幾步?
3痹“代入”這一步應注意什么”
其次,結合學生的回答,教師指出:(1)求代數(shù)式的值,就是用數(shù)值代替代數(shù)式里的字母按照代數(shù)式的運算順序,直接計算后所得的結果就叫做代數(shù)式的值;(2)代數(shù)式的值是由代數(shù)式里字母所取值的確定而確定的。
當a=2,b=1,c=3時,求下列代數(shù)式的值:(1)c-(c-a)(c-b);
今天的內容就介紹到這里了。
初中數(shù)學教案篇六
《余角和補角》第2課時教案
教學目標:
知識與能力
能正確運用角度表示方向,并能熟練運算和角有關的問題。
過程與方法
能通過實際操作,體會方位角在是實際生活中的應用,發(fā)展抽象思維。
情感、態(tài)度、價值觀
能積極參與數(shù)學學習活動,培養(yǎng)學生對數(shù)學的好奇心和求知欲。
教學重點:方位角的表示方法。
教學難點:方位角的準確表示。
教學準備:預習書上有關內容
預習導學:
如圖所示,請說出四條射線所表示的方位角?
教學過程;
一、創(chuàng)設情景,談話導入
在現(xiàn)實生活中,有一種角經(jīng)常用于航空、航海,測繪中領航員常用地圖和羅盤進行這種角的測定,這就是方位角,方位角應用比較廣泛,什么是方位角呢?
二、精講點拔,質疑問難
方位角其實就是表示方向的角,這種角以正北,正南方向為基準描述物體的方向,如“北偏東30°”,“南偏西40°”等,方位角不能以正東,正西為基準,如不能說成“東偏北60°,西偏南50°”等,但有時如北偏東45°時,我們可以說成東北方向。
三、課堂活動,強化訓練
例1如圖:指出圖中射線oa、ob所表示的方向。
(學生個別回答,學生點評)
例2若燈塔位于船的北偏東30°,那么船在燈塔的什么方位?
(小組討論,個別回答,教師總結)
例3如圖,貨輪o在航行過程中發(fā)現(xiàn)燈塔a在它的南偏東60°的方向上,同時在它北偏東60°,南偏西10°,西北方向上又分別發(fā)現(xiàn)了客輪b,貨輪c和海島d,仿照表示燈塔方位的方法,畫出表示客輪b、貨輪c、海島d方向的射線。
(教師分析,一學生上黑板,學生點評)
四、延伸拓展,鞏固內化
例4某哨兵上午8時測得一艘船的位置在哨所的。南偏西30°,距哨所10km的地方,上午10時,測得該船在哨所的北偏東60°,距哨所8km的地方。
(1)請按比例尺1:200000畫出圖形。
(獨立完成,一同學上黑板,學生點評)
(2)通過測量計算,確定船航行的方向和進度。
(小組討論,得出結論,代表發(fā)言)
五、布置作業(yè)、當堂反饋
練習:請使用量角器、刻度尺畫出下列點的位置。
(1)點a在點o的北偏東30°的方向上,離點o的距離為3cm。
(2)點b在點o的南偏西60°的方向上,離點o的距離為4cm。
(3)點c在點o的西北方向上,同時在點b的正北方向上。
作業(yè):書p1407、9