作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動的總的組織綱領(lǐng)和行動方案。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的教案嗎?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
數(shù)學(xué)一元一次方程教案篇一
一 、教學(xué)目標(biāo):
知識與技能:理解有關(guān)概念:方程,一元一次方程,方程的解,體會用方程來表示數(shù)量關(guān)系的優(yōu)越性。
過程與方法:能將實際問題抽象為數(shù)學(xué)問題,并會找相等關(guān)系來列方程。
情感與態(tài)度:增強應(yīng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)重點:從實際問題中尋找相等關(guān)系。
教學(xué)難點:從實際問題中尋找相等關(guān)系。
二、學(xué)習(xí)路線:
1、閱讀課本 。
2、完成以下學(xué)習(xí)任務(wù):
(1)章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地,時間如表所示,翠湖在青山、秀水兩地之間,距青山50千米,距秀水70千米。求王家莊到翠湖的路程?
①列算式用算術(shù)方法解決這個實際問題:____________________
②用方程來解決這個實際問題:先畫示意圖:
再找相等關(guān)系來列方程: (小組交流,討論多種方法)
(2)方程的概念:___________________________
判斷以下式子哪些是方程?是的畫
3+1=4; ;
(3)根據(jù)下列問題列方程:
①用一根長24cm的鐵絲圍成一個正方形,設(shè)正方形的邊長是x cm,則可列方程:________
②一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過x 月這臺計算機的使用時間達到規(guī)定的檢修時間2450小時,則可列方程:____________________
③某校女生占全體學(xué)生數(shù)的52℅,比男生多80人,設(shè)這個學(xué)校有x 名學(xué)生,則可列方程:___________________
④課本 的三道練習(xí)題: (完成后小組批改)
(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________
(6)什么叫做方程的解?__________________________
(7)括號里的數(shù)( =3, =4, =-4)是方程 的解有____________
歸納: 設(shè)未知數(shù) 列方程
實際問題一元一次方程
分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
數(shù)學(xué)一元一次方程教案篇二
教學(xué)目標(biāo):進一步認識方程,理解一元一次方程的概念,會根據(jù)題意列簡單的一元一次方程。
認識方程的解的概念。
掌握驗根的方法。
體驗用嘗試法解一元一次方程的思想方法。
重點:一元一次方程的概念
難點:嘗試檢驗法
教學(xué)過程:
1.,溫故
方程是含有 ______的______.
歸納:判斷方程的兩要素:
①有未知數(shù) ②是等式
(通過填空讓學(xué)生簡單回顧方程概念,并總結(jié)方程兩要素)
2.知新
根據(jù)題意列方程:
(1)一件衣服按8折銷售的售價為72元,這件衣服的原價是多少元?
設(shè)這件衣服的原價為x元,8折后售價為______
可列出方程 .
(2)有一棵樹,剛移栽時,樹高為2,假設(shè)以后平均每年長0.3,幾年后樹高為5?
設(shè)x年后樹高為5,
可列出方程_______
(3)物體在水下,水深每增加10.33米承受的壓力就會增加1個大氣壓. 當(dāng)“蛟龍”號下潛至3500米時,它承受的壓力約為340個大氣壓. 問當(dāng)它承受壓力增加到500個大氣壓時,它又繼續(xù)下潛了多少米?
設(shè)它又繼續(xù)下潛了x米,
x米增加大氣壓 個。
可列出方程 .
(教師引導(dǎo)學(xué)生列出方程)
80%x=72
觀察比較方程:
(學(xué)生根據(jù)方程特點填空)
等式的兩邊的代數(shù)式都是_________;每個方程都只含有___個未知數(shù);且未知數(shù)的指數(shù)是_____
(教師總結(jié))這樣的方程叫做一元一次方程.
(教師提問:需滿足幾個特點,學(xué)生回答后總結(jié)一元一次方程概念)
1.兩邊都是整式
2.只含有一個未知數(shù)
3.未知數(shù)的指數(shù)是一次.
(教師引出課題——5.1一元一次方程)
3.(接下來一起將前面所學(xué)新知與舊知融會貫通)
1.下列各式中,哪些是方程?哪些是一元一次方程?
(1)5x=0 (2)1+3x
(3)2=4+ (4)x+=5
(5) (6)3+2=1–
(這里需要讓學(xué)生較快的先找出方程(1)、(3)、(4)、(5)、(6),并說說為什么剩下的不是方程。接著找出其中的一元一次方程,著重說說為什么(3)、(4)、(5)不是呢?引發(fā)學(xué)生套用一元一次方程三個特點說明,教師要補充的是(3)是二次方程,(4)是二元方程,(5)這種情況左邊不是整式,進而進一步再強調(diào)一次什么是“元”什么是“次”。(3)錯在未知數(shù)不能出現(xiàn)2次,(4)錯在不能出現(xiàn)兩個未知數(shù))
4.概念提升(為了能夠游刃有的掌握一元一次方程的概念,我們再對它做一次提升,大家請看下面兩個問題。
1、方程3x-2 + 5=3是一元一次方程,則代數(shù)式 =_____。
2、方程(a+6)x2 +3x-8=7是關(guān)于x的
一元一次方程,則a= _____。
(通過概念的強調(diào)對這題的理解有很大幫助,題1檢驗學(xué)生對一元一次方程中“一次”的理解,題2檢驗學(xué)生對“一元”的理解)
5.一元一次方程的根
思考:
當(dāng)為多少時一元一次方程6=+4成立呢?(本題學(xué)生容易猜想得到,教師引出一元一次方程的解的概念)
一元一次方程的解:
使一元一次方程左右兩邊的值相等的未知數(shù)的值叫做一元一次方程的解,也叫做方程的根。
(引導(dǎo)學(xué)生掌握驗根的方法,并指導(dǎo)學(xué)生完成驗根過程書寫步驟)
判斷下列t的值能不能使方程2t+1=7-t 左右兩邊的值相等.
(1 )t=-2 (2) t=2
(先讓學(xué)生口頭檢驗,再叫學(xué)生說說得出結(jié)論的過程,進而引導(dǎo)學(xué)生一步步書寫(1)步驟,學(xué)生齊答教師需要先板書步驟,完成后投影出示步驟,接下來讓學(xué)生上黑板書寫(2)的驗根過程)
解: (1)把x=-2代入方程:
左邊= 2×(-2)+1=-4+1=-3
右邊=7-(-2)=7+2 =9
∵左邊≠右邊
∴x=-2 不是原方程的解.
6.嘗試-檢驗法(光會驗根還不夠,我們還應(yīng)學(xué)習(xí)怎樣找到一元一次方程的根,大家請看這個問題)
一射箭運動員兩次射擊的成績都是整數(shù),平均成績是6.5環(huán),其中第二次射箭的成績?yōu)?9環(huán),問第一次射箭的成績是多少環(huán)?
設(shè)第一次的射箭成績?yōu)閤環(huán),可列出方程 。
(請一學(xué)生回答得出的方程 )
思考:同學(xué)們,請猜想一下,結(jié)合實際,x能取哪些數(shù)呢?
(學(xué)生可能會說出0.到10所有整數(shù)都可能若說不出再引導(dǎo))(每次射箭最多是10環(huán),
而且只能取整數(shù)環(huán))(要檢驗11次有點多,能不能再把范圍縮小一點呢?引導(dǎo)學(xué)生對比已知的一次成績與平均成績的高低,從而得出未知成績應(yīng)該比平均成績小,學(xué)生得出可以代入檢驗7次):由已知得,x為自然數(shù)且只能取0,1,2,3,4,5,6.把這些值分別代入方程左邊得。(讓學(xué)生檢驗得到根,接下來梳理驗根的結(jié)果)
把x為0,1,2,3,4,5,6這些值分別代入方程左邊得:
x
1
2
3
4
5
6
4.5
5
5.5
6
6.5
7
7.5
當(dāng)x=4時, =6.5 ,所以 x=4就是 一元一次方程
=6.5 的解.
(剛剛我們得出方程根的方法叫)----嘗試檢驗的方法
(投影出示其概念并強調(diào)其對于找出方程根的重要意義)
7.收獲總結(jié)
一元一次方程概念(強調(diào)三個特點)
一元一次方程的根(有驗根以及嘗試檢驗法找根)
8.時間多余做書本練習(xí)
板書設(shè)計:
5.1一元一次方程
1 解: (1)把x=-2代入方程:
一元一次方程的概念 2
掌握驗根步驟
一元一次方程的解
嘗試檢驗法尋根
數(shù)學(xué)一元一次方程教案篇三
《一元一次方程—數(shù)學(xué)活動》教學(xué)設(shè)計
一、內(nèi)容與內(nèi)容分析
內(nèi)容
一元一次方程—數(shù)學(xué)活動(人民教育出版社《義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書`·數(shù)學(xué)》七年級上冊第三章第四節(jié)第五課時)。
內(nèi)容解析
通過前一階段“再探實際問題與一元一次方程”的學(xué)習(xí),學(xué)生基本掌握了銷售中的盈虧、用哪種燈節(jié)省以及球賽積分表問題。在現(xiàn)實生活中還會有由于各方面的原因,需要選擇解決問題的最佳方案,例如顧客在購買某種商品時有幾種打折的方法,顧客如何選擇最佳的優(yōu)惠方法;在各種工程的招標(biāo)中,如何選擇最佳的投標(biāo)方案,用較少的投資取得最佳的效益等等,這些問題有的可以應(yīng)用一元一次方程的知識加以解決。因此,本課既是對前一階段學(xué)習(xí)的鞏固,又是新的應(yīng)用和引伸,同時本課作為“數(shù)學(xué)活動”,這就為數(shù)學(xué)拓展了空間,可引導(dǎo)學(xué)生到生活中實際了解有關(guān)數(shù)學(xué)問題,嘗試應(yīng)用數(shù)學(xué)知識解決問題,從而使學(xué)生在學(xué)習(xí)中興趣盎然,獲得真知,培養(yǎng)求異思維和創(chuàng)新的精神。
數(shù)學(xué)來源于生活,數(shù)學(xué)教學(xué)應(yīng)走進生活,生活也應(yīng)走進數(shù)學(xué),數(shù)學(xué)與生活的結(jié)合,便會使問題變得具體、生動,學(xué)生就會產(chǎn)生親近感、探究欲,從而誘發(fā)內(nèi)在知識潛能,主動動手、動口、動腦。因此,在教學(xué)中,我們應(yīng)自覺地把生活作為課堂,讓數(shù)學(xué)回歸生活,服務(wù)生活。
教學(xué)重點
經(jīng)歷探索具體情境中的數(shù)量關(guān)系,體會一元一次方程與實際問題之間的數(shù)量關(guān)系,會用方程解決實際問題.
二、目標(biāo)和目標(biāo)解析
1.目標(biāo)
(1)運用一元一次方程解決現(xiàn)實生活中的`問題,進一步體會“建模”思想方法.
(2)通過數(shù)學(xué)活動使學(xué)生進一步體會一元一次方程和實際問題中的關(guān)系,通過分析問題中的數(shù)量關(guān)系,進行預(yù)測、判斷.
(3)運用所學(xué)過的數(shù)學(xué)知識進行一次市場調(diào)查,體會數(shù)學(xué)知識在社會活動中的應(yīng)用,提高應(yīng)用知識的能力和社會實踐能力.
(4)通過數(shù)學(xué)活動,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強自信心,進一步發(fā)展學(xué)生合作交流的意識和能力,體會數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度.
2.目標(biāo)解析
(1)通過活動一,讓學(xué)生以新聞播報的形式引出本節(jié)課的活動1,創(chuàng)設(shè)問題情境,調(diào)動學(xué)習(xí)興趣,學(xué)生進一步體會一元一次方程和實際問題的關(guān)系;
(2)通過活動二,通過查閱資料,小組交流討論,探究了解未知的領(lǐng)域與知識!運用一元一次方程解決現(xiàn)實生活中的問題,進一步體會“建?!彼枷敕椒?,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)興趣,增強自信心;
(3)通過活動三,把事先借的報刊、圖書拿出來,再收集一些數(shù)據(jù),分析其中的等量關(guān)系,編成問題,看看能不能用一元一次方程解決這些問題,使學(xué)生運用所學(xué)過的數(shù)學(xué)知識進行一次市場調(diào)查,體會數(shù)學(xué)知識在社會活動中的應(yīng)用,提高應(yīng)用知識的能力和社會實踐能力;
(4)通過活動四,了解了杠桿平衡規(guī)律,并運用規(guī)律求杠桿平衡時的支點位置;另一方面體會了數(shù)學(xué)實驗對學(xué)習(xí)的幫助與啟發(fā),進一步認識到方程在實際中的廣泛應(yīng)用,進一步發(fā)展學(xué)生合作交流的意識和能力,體會數(shù)學(xué)與現(xiàn)實的聯(lián)系,培養(yǎng)學(xué)生求真的科學(xué)態(tài)度。
三、教學(xué)問題診斷分析
在本節(jié)課的教學(xué)過程中,老師只是起到一個組織者,引導(dǎo)者,合作者的作用,所有結(jié)論由學(xué)生通過動手實驗、合作交流、主動發(fā)現(xiàn),這對學(xué)生的分析問題,解決問題,表達能力等各方面能力要求較高。本節(jié)課兩個活動學(xué)生生活中的經(jīng)驗不多,大多屬于陌生領(lǐng)域與知識,需要學(xué)生在實驗交流過程中動腦、動口、動手,需要邊學(xué)習(xí),邊應(yīng)用,有一定難度。由于生活中的數(shù)據(jù)較大,在計算上也會給學(xué)生帶來困難。
教學(xué)難點
明確問題中的已知量與未知量間的關(guān)系,尋找等量關(guān)系.
四.教學(xué)支持條件分析
ppt、白板交互、微課、實物投影
五、教學(xué)過程設(shè)計
1.數(shù)學(xué)活動1 創(chuàng)設(shè)情境,導(dǎo)入新課
播報員播報新聞報道:統(tǒng)計資料表明,山水市去年居民的人均收入為11664元,與前年相比增長8%,扣除價格上漲因素,實際增長6.5%.
你理解資料中有關(guān)數(shù)據(jù)的含義嗎?如果不明白,請通過查閱資料或請教他人弄懂它們,根據(jù)上面的數(shù)據(jù),試用一元一次方程求:
(1)山水市前年居民的人均收入為多少元?
(2)在山水市,去年售價為1000元的商品在前年的售價為多少元?(精確到0.1元)
(學(xué)生先獨立思考、再小組討論,幾分鐘后展示成果。本題學(xué)生對提議的理解有一定的困難,先理解本題不懂的數(shù)據(jù)含義)
師引導(dǎo):說說“增長8%”和“扣除價格因素,實際增長6.5%”的意思;
生回答:通過查閱資料或其他方式解釋.
師指明:你能利用這些數(shù)據(jù)之間的關(guān)系從中再計算出一些新的數(shù)據(jù)嗎?
生回答:(1)增長率的公式:(去年人均收入-前年人均收入)前年人均收入=8%,即去年人均收入=前年人均收入(1+8%)
(2)去年價格上漲率=8%-6.5%=1.5%
生獨立做,后展示結(jié)果.
(1)解:設(shè)山水第前年居民人均收入為x元
列方程(1+8%)x=11664
解得x=10800
答:山水市前年居民的人均收入為10800元.
(2)解:設(shè)前年的售價為x元
(1+1.5%)x=1000
解得x≈985.2元
答:在山水市,去年售價為1000元的商品在前年的售價為985.2元.
師生共同解決問題.
練習(xí):數(shù)據(jù)表明:從19xx年至20xx年,雖然國有企業(yè)的戶數(shù)減少了,但國有及國有控股工業(yè)企業(yè)完成的工業(yè)增加值在不斷增長,到20xx年底已經(jīng)升到14652億元,比上一年增長11.67%,比全國各行業(yè)的增加值年均增長高出2.37個百分點。
你能算出20xx年國有控股工業(yè)企業(yè)的工業(yè)總產(chǎn)值嗎?還能算出全國其它行業(yè)的工業(yè)產(chǎn)值的增長百分比嗎?經(jīng)調(diào)查,20xx年全國其它行業(yè)的工業(yè)產(chǎn)值是18895億元,你能計算出20xx年的總產(chǎn)值嗎?
【設(shè)計意圖】把生活中的新聞報道的內(nèi)容為問題,一方面鍛煉學(xué)生運用方程解決問題的能力,另一方面引導(dǎo)學(xué)生關(guān)注新聞中隱含的數(shù)學(xué)問題,進一步體會數(shù)學(xué)在生活中的應(yīng)用.這種形式也激發(fā)了學(xué)生自主學(xué)習(xí),深入探究的熱情,也有利于提高分析問題和解決問題的能力。
活動二.動手實踐、探索新知
播報員播報新聞報道:阿基米德曾說過:“假如給我一個支點,我就能撬動整個地球!”進而介紹阿基米德的杠桿原理.
用一根質(zhì)地均勻的木桿和一些等重的小物體,做下列實驗:
(1) 在木桿中間處栓繩,將木桿吊起并使其左右平衡,吊繩處為木桿的支點;
(2) 在木桿兩端各懸掛一重物,看看左右是否保持平衡;
(3) 在木桿左端小物體下加掛一重物,然后把這兩個重物一起向右移動,直至左右平衡,記錄此時支點到木桿左右兩邊掛重物處的距離;
(4) 在木桿左端兩小物體下再加掛一重物,然后把這三個重物一起向右移動,直至左右平衡,記錄此時支點到木桿左右兩邊掛重物處的距離;
(5) 在木桿左邊繼續(xù)加掛重物,并重復(fù)以上操作和記錄.
想想可以怎樣替代實驗?根據(jù)記錄你能發(fā)現(xiàn)什么規(guī)律?
師引導(dǎo):沒有木桿,重物等實驗用具,我們可以設(shè)計替代實驗。
生:小組交流設(shè)計,幾分鐘展示:1.支點不動,重物移動. 2.支點移動,重物不動
師介紹:展示兩種試驗方法,及數(shù)據(jù).
師問:根據(jù)記錄你能發(fā)現(xiàn)什么規(guī)律?
生:思考回答。
師問:1.(支點不動,重物移動)如圖,在木桿右端掛一個重物,支點左邊掛n個重物,并使左右平衡.設(shè)木桿長為l cm,支點在木桿中點處,支點到木桿左邊掛重物處的距離為x cm,把n,l作為已知數(shù),列出關(guān)于x的一元一次方程. x
l
2.(支點移動,重物不動)如果直尺一端放一枚棋子,另一端放n枚棋子,支點應(yīng)在直尺的哪個位置?設(shè)直尺長為l,用一元一次方程求解。
【設(shè)計意圖】
活動2是動手實驗與動腦分析相結(jié)合,通過簡單實驗發(fā)現(xiàn)杠桿的平衡條件,并根據(jù)這個條件,列一元一次方程,解決問題。問題中有字母n,l作為已知數(shù),進行推導(dǎo)計算,為物理學(xué)科的公式推導(dǎo)積累經(jīng)驗.
說明:本節(jié)課的教學(xué)是以創(chuàng)設(shè)情景——活動探究——展示交流——反思評價的方式展開。突出一個“活”字,重在一個“動”字,落實一個“用”字。通過活動,讓學(xué)生感受數(shù)學(xué)存在于生活又服務(wù)于生活。
布置作業(yè)。
請收集一些重要問題(例如氣候、節(jié)能、經(jīng)濟等)的有關(guān)數(shù)據(jù),經(jīng)過分析后編出可以利用一元一次方程解決的問題,并正確的表述問題及其解決過程.
六、目標(biāo)檢測設(shè)計
小明和小紅到公園玩蹺蹺板游戲,可是他們倆坐在蹺板上怎么也平衡不了?,F(xiàn)在知道小明的體重是30千克,小紅的體重是27千克,蹺板長3.8米。你能幫他倆解決這個問題嗎?
【設(shè)計意圖】
對本節(jié)重點內(nèi)容進行現(xiàn)場檢測,及時了解教學(xué)目標(biāo)的達成情況。
數(shù)學(xué)一元一次方程教案篇四
數(shù)學(xué)一元一次方程的教學(xué)設(shè)計
隨著時光的流逝,新的一個學(xué)期又開始了,為了更好的完成新學(xué)期的教育教學(xué)工作,使以后的工作有目的、有計劃、有組織的順利的進行,特制訂本學(xué)期的初一年級上冊數(shù)學(xué)第三章教學(xué)計劃。
學(xué)習(xí)目標(biāo):
一 、教學(xué)目標(biāo):
知識與技能:理解有關(guān)概念:方程,一元一次方程,方程的解,體會用方程來表示數(shù)量關(guān)系的優(yōu)越性。
過程與方法:能將實際問題抽象為數(shù)學(xué)問題,并會找相等關(guān)系來列方程。
情感與態(tài)度:增強應(yīng)用數(shù)學(xué)的意識,激發(fā)學(xué)習(xí)數(shù)學(xué)的熱情。
教學(xué)重點:從實際問題中尋找相等關(guān)系。
教學(xué)難點:從實際問題中尋找相等關(guān)系。
二、學(xué)習(xí)路線:
1、閱讀課本 。
2、完成以下學(xué)習(xí)任務(wù):
(1)章前圖中的汽車勻速行駛途經(jīng)王家莊、青山、秀水三地,時間如表所示,翠湖在青山、秀水兩地之間,距青山50千米,距秀水70千米。求王家莊到翠湖的路程?
①列算式用算術(shù)方法解決這個實際問題:____________________
②用方程來解決這個實際問題:先畫示意圖:
再找相等關(guān)系來列方程: (小組交流,討論多種方法)
(2)方程的概念:___________________________
判斷以下式子哪些是方程?是的畫
3+1=4; ;
(3)根據(jù)下列問題列方程:
①用一根長24cm的鐵絲圍成一個正方形,設(shè)正方形的邊長是x cm,則可列方程:________
②一臺計算機已使用1700小時,預(yù)計每月再使用150小時,經(jīng)過x 月這臺計算機的使用時間達到規(guī)定的檢修時間2450小時,則可列方程:____________________
③某校女生占全體學(xué)生數(shù)的52℅,比男生多80人,設(shè)這個學(xué)校有x 名學(xué)生,則可列方程:___________________
④課本 的三道練習(xí)題: (完成后小組批改)
(4)一元一次方程的概念:___________________________注意:是整式方程。
(5)什么叫做解方程:____________________________
(6)什么叫做方程的解?__________________________
(7)括號里的數(shù)( =3, =4, =-4)是方程 的解有____________
歸納: 設(shè)未知數(shù) 列方程
實際問題一元一次方程
分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
數(shù)學(xué)一元一次方程教案篇五
一、學(xué)生起點分析:
通過前幾節(jié)解方程的學(xué)習(xí),學(xué)生已經(jīng)掌握了解方程的基本方法、在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關(guān)系列出方程解應(yīng)用題,但學(xué)生在列方程解應(yīng)用題時常常會遇到一下困難,就是從題設(shè)條件中找不到所依據(jù)的等量關(guān)系,或雖能找到等量關(guān)系但不能列出方程、
二、教學(xué)任務(wù)分析:
本課以“等積變形”為例引入課題,通過學(xué)生自主探究、協(xié)作交流,教師點撥相結(jié)合的方式,引導(dǎo)學(xué)生動手操作的方法分析問題,體會用圖形語言分析復(fù)雜問題的優(yōu)點,從而抓住等量關(guān)系“鍛壓前的體積=鍛壓后的體積”展開教學(xué)活動,讓學(xué)生經(jīng)歷圖形變換的應(yīng)用等活動,展現(xiàn)運用方程解決實際問題的一般過程、因此,本節(jié)教材的處理策略是:展現(xiàn)問題情境――提出問題――分析數(shù)量關(guān)系和等量關(guān)系――列出方程,解方程――檢驗解的合理性、
三、教學(xué)目標(biāo):
知識與技能:
1、借助立體及平面圖形學(xué)會分析復(fù)雜問題中的數(shù)量關(guān)系和等量關(guān)系,體會直接與間接設(shè)未知數(shù)的解題思路,從而建立方程,解決實際問題、
2、通過解決實際問題,使學(xué)生進一步明確必須檢驗方程的解是否符合題意、
過程與方法:通過對實際問題的解決,體會方程模型的作用,發(fā)展學(xué)生分析問題、解決問題、敢于提出問題的能力、
情感態(tài)度與價值觀:通過對“我變胖了”中的數(shù)學(xué)問題的探討,使學(xué)生在動手、獨立思考、的過程中,進一步體會方程模型的作用,鼓勵學(xué)生大膽質(zhì)疑,激發(fā)學(xué)生的好奇心和主動學(xué)習(xí)的欲望、
四、教學(xué)過程設(shè)計:
環(huán)節(jié)一 創(chuàng)設(shè)情景,引入新課
內(nèi)容:同學(xué)們自己預(yù)習(xí)的`基礎(chǔ)上,用已經(jīng)備好的橡皮泥,自制“瘦長”與“矮胖”的圓柱,觀察分析個中現(xiàn)象、
考慮幾個問題:
1、手里的橡皮泥在手壓前和手壓后有何變化?
2、在你操作的過程中,圓柱由“瘦”變“胖”,圓柱的底面直徑變了沒有?圓柱的高呢?
3、在這個變化過程中,是否有不變的量?是什么沒變?
目的:讓學(xué)生在玩中體會等體積變化的現(xiàn)象中蘊涵的不變量、同時分析出不變量與變量間的等量關(guān)系、
學(xué)生能夠認識到: 手里的橡皮泥在手壓前和手壓后形狀發(fā)生了變化,變胖了,變矮了、即高度和底面半徑發(fā)生了改變、手壓前后體積不變,重量不變、
環(huán)節(jié)二:運用情景,解決問題
內(nèi)容: 例1、將一個底面直徑是10厘米、高為36厘米的“瘦長”形圓柱鍛壓成底面直徑為20厘米的“矮胖”形圓柱,高變成了多少?
目的:將上述環(huán)節(jié)中體會到的形之間的變與不變的關(guān)系、量之間的等量關(guān)系抽象成數(shù)學(xué)問題,利用前幾節(jié)的解方程方法解決實際問題、
實際效果:學(xué)生解答過程布列方程很順利,有的學(xué)生還使用了下面的表格來幫助分析、
鍛壓前 鍛壓后
底面半徑 5cm 10cm
高 36cm xcm
體積 π×25×36 π×100?x
由實驗操作環(huán)節(jié)知“鍛壓前的體積=鍛壓后的體積”,從而得出方程、
解:設(shè)鍛壓后的圓柱的高為xcm,由題意得
π×25×36=π×100?x、
解之得 x=9、
此時有學(xué)生將π的值取3.14,代入方程,教師應(yīng)在此時給予指導(dǎo),不要早說,現(xiàn)在恰到好處!
(1) 此類題目中的π值由等式的基本性質(zhì)就已約去,無須帶具體值;
(2) 若是題目中的π值約不掉,也要看題目中對近似數(shù)有什么要求,再確定π值取到什么精確程度、
過程感悟:本節(jié)內(nèi)容通過一幅幾何圖形展示題目中的一些數(shù)量關(guān)系,而實際操作的過程有同學(xué)將圓柱體變成了長方體,需要教師把握教育機會,引導(dǎo)學(xué)生作出相關(guān)的解釋、
分析: 鍛壓前 鍛壓后
底面半徑 5cm 長acm, 寬bcm
高 36cm xcm
體積 π×25×36 abx
環(huán)節(jié)三:操作實踐,發(fā)現(xiàn)規(guī)律
內(nèi)容:學(xué)生用預(yù)先準(zhǔn)備好的40厘米長的鐵絲,以小組作出不同形狀的長方形,通過測量邊長,近似求出長方形的面積,比較小組內(nèi)六個同學(xué)的計算結(jié)果,你發(fā)現(xiàn)了什么?
目的:我們知道, 感知到的東西往往沒有自己親手經(jīng)歷操作后的感受來得實在、所以設(shè)置此環(huán)節(jié),讓學(xué)生手、眼、腦幾個感官并用,在操作中體會,在計算中驗證,在變化中發(fā)現(xiàn)、這樣能培養(yǎng)學(xué)生觀察、分析,歸納、總結(jié)等數(shù)學(xué)學(xué)習(xí)中不備數(shù)學(xué)思想與數(shù)學(xué)方法,也同時讓學(xué)生感悟最復(fù)雜的問題中的道理,就在我們玩的過程,就在我們的生活中。
由學(xué)生的實際操作得到的近似值已反映出來一個很好的規(guī)律。
學(xué)生:由操作的過程,同學(xué)們作出的長方形形狀有“胖”有“瘦”, 反映到表中數(shù)據(jù)為, 當(dāng)長方形的周長一定,它的長逐漸變短,寬隨之逐漸變長,面積在逐漸變大、當(dāng)長與寬一樣長時面積最大、
過程感悟:不要把學(xué)生逼太緊,不要怕完不成進度,這個過程進行完后,學(xué)生對課本設(shè)置相關(guān)內(nèi)容就剩下規(guī)范解題過程了、學(xué)生的理解遠比直接先講教材的例題效果要好的多、
環(huán)節(jié)四:練一練,體驗數(shù)學(xué)模型
內(nèi)容:課本例題
目的:體驗“數(shù)學(xué)化”過程,進一步理性地感受上一個環(huán)節(jié)中得出的結(jié)論,培養(yǎng)學(xué)生數(shù)學(xué)思考的嚴(yán)謹(jǐn)性,判斷推理的科學(xué)性,語言表述的準(zhǔn)確性、
例2、一根長為10米的鐵絲圍成一個長方形、若該長方形的長比寬多1.4米。
(1)此時長方形的長和寬各為多少米?
(2)若該長方形的長比寬多0.8米,此時長方形的長和寬各為多少米?它圍成的長方形的面積與(1)相比,有什么變化?
(3)若該長方形的長與寬相等,即圍成一個正方形,那么正方形的邊長是多少?它圍成的長方形的面積與(2)相比,有什么變化?
實際效果:學(xué)生掌握很好、課本已有完整的解題過程,留做課后作業(yè)、
環(huán)節(jié)五:課堂小結(jié)
1、通過對“我變胖了”的了解,我們知道“鍛壓前體積=鍛壓后體積”,“變形前周長等于變形后周長”是解決此類問題的關(guān)鍵、其中也蘊涵了許多變與不變的辨證的思想、
2、遇到較為復(fù)雜的實際問題時,我們可以借助表格分析問題中的等量關(guān)系,借此列出方程,并進行方程解的檢驗.
3、學(xué)習(xí)中要善于將復(fù)雜問題簡單化、生活化,再由實際背景抽象出數(shù)學(xué)模型,從而解決實際問題、
環(huán)節(jié)六:布置作業(yè)
數(shù)學(xué)一元一次方程教案篇六
教學(xué)目標(biāo)
1、了解方程的概念和一元一次方程的概念;
2、知道什么是解方程,會檢驗?zāi)硞€值是不是方程的解;
3、培養(yǎng)學(xué)生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。
教學(xué)重點
1、一元一次方程的概念及方程的解;
2、能驗證一個數(shù)是否是一個方程的解。
教學(xué)難點
尋找問題中的等量關(guān)系,列出方程。
教學(xué)過程
一、情景誘導(dǎo)
同學(xué)們:世界上最大的動物是藍鯨,一頭藍鯨重124t,比一頭大象體重的25倍少1t,你能計算出這頭大象的體重嗎?
如果設(shè)大象的體重為x t,藍鯨的體重應(yīng)如何表示呢?怎樣解決這個問題呢?(學(xué)生思考并回答:25x―1=124,)我們把這個式子給它起個名字,叫一元一次方程,這就是我們今天要學(xué)習(xí)的一元一次方程(板書課題),那――什么叫做一元一次方程――呢?,請同學(xué)們帶著這些問題,閱讀課本114頁―115頁練習(xí)前的內(nèi)容,對照課本找出自學(xué)提綱里問題的答案。
要求:先完成得請你幫幫沒有完成的同學(xué),不會做的同學(xué)請教會做的同學(xué)。
二、自學(xué)指導(dǎo)
學(xué)生自學(xué)課本,并完成自學(xué)提綱。老師可以先進行板書準(zhǔn)備,再到學(xué)生中進行巡視指導(dǎo),掌握學(xué)生的學(xué)習(xí)狀況,為展示歸納做準(zhǔn)備。
附:自學(xué)提綱:
1、什么是方程?請舉出1―2個例子。未知數(shù)通常用什么表示?
2、什么是一元一次方程?請舉出1―2個例子。
3、在課本“例1”中,你知道這些方程中等號兩邊各表示什么意思嗎?
4、什么是方程的解?x=1和x=―1中哪一個是方程x+3=2的解?為什么?
5、什么是解方程?
三、展示歸納
1、請有問題的同學(xué)逐個回答自學(xué)提綱中的問題,生說師寫;
2、發(fā)動學(xué)生進行評價、補充、完善;
3、教師根據(jù)展示情況進行必要的講解和強調(diào)。
四、變式練習(xí)
1、2題口答,要求說理由;其它各題,先讓學(xué)生獨立完成,教師做必要的板書準(zhǔn)備后,巡回指導(dǎo),了解情況,再讓學(xué)生匯報結(jié)果,并請同學(xué)評價、完善,然后教師根據(jù)需要進行重點強調(diào)。
附:變式練習(xí)
1、下列各式中,哪些是一元一次方程?
(1) 5x=0;
(2) 1+3x ;
(3) x2=4+x ;
(4) x+y=5 ;
(5)3m+2=1―m ;
(6)x+2>1
(7) 《3、1、1一元一次方程》教學(xué)設(shè)計(修改稿和原稿) =1
2、請你說出一元一次方程2x=4的解是―――,解是x=―2的一元一次方程: 。
3、已知關(guān)于x的方程2x 《3、1、1一元一次方程》教學(xué)設(shè)計(修改稿和原稿) +3=0為一元一次方程,求k的值。
4、練習(xí)本每本0、8元,小明拿了10元錢買了y本,找回4、4元,列方程是
5、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:
(1)某數(shù)比它的2倍小3;
(2)某數(shù)與5的差比它的2倍少11;
(3)把某數(shù)增加它的10%后恰為80、
6、若x=1是方程kx―1=0的解,則k=
五、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí)你學(xué)到了什么?還有沒有要提醒同學(xué)們注意的?(學(xué)生進行自主小結(jié),再由教師概括總結(jié))。
六、布置作業(yè)
課本83頁習(xí)題3、1 第1題。
數(shù)學(xué)一元一次方程教案篇七
一、教學(xué)目標(biāo):
1、通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、通過觀察,歸納一元一次方程的概念
3、積累活動經(jīng)驗。
二、重點和難點
重點:歸納一元一次方程的概念
難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義
三、教學(xué)過程
1、課前訓(xùn)練一
(1)如果 || = 9,則 = ;如果 2 = 9,則 =
(2)在數(shù)軸上距離原點4個單位長度的數(shù)為
(3)下列關(guān)于相反數(shù)的說法不正確的是( )
a、兩個相反數(shù)只有符號不同,并且它們到原點的距離相等。
b、互為相反數(shù)的兩個數(shù)的絕對值相等
c、0的相反數(shù)是0
d、互為相反數(shù)的兩個數(shù)的`和為0(字母表示為 、互為相反數(shù)則 )
e、有理數(shù)的相反數(shù)一定比0小
(4)乘積為1的兩個數(shù)互為 倒數(shù) ,如:
(5)如果 ,則( )
a、, 互為倒數(shù) b、, 互為相反數(shù) c、, 都是0 d、, 至少有一個為0
(6)小明種了一棵高度為40厘米的樹苗,栽種后每周樹苗長高約為12厘米,問大約經(jīng)過幾周后樹苗長高到1米?設(shè)大約經(jīng)過 周后樹苗長高到1米,依題意得方程( )
a、b、c、d、00
2、由課本p149卡通圖畫引入新課
3、分組討論p149兩個練習(xí)
4、p150:某長方形的足球場的周長為310米,長與寬的差為25米,求這個足球場的長與寬各是多少米?設(shè)這個足球場的寬為 米,那么長為( +25)米,依題意可列得方程為:( )
a、+25=310 b、+( +25)=310 c、2 =310 d、2=310
課本的寬為3厘米,長比寬多4厘米,則課本的面積為平方厘米。
5、小芳買了2個筆記本和5個練習(xí)本,她遞給售貨員10元,售貨員找回0.8元。已知每個筆記本比練習(xí)本貴1.2元,求每個練習(xí)本多少元?
解:設(shè)每個練習(xí)本要 元,則每個筆記本要 元,依題意可列得方程:
6、歸納方程、一元一次方程的概念
7、隨堂練習(xí)po151
8、達標(biāo)測試
(1)下列式子中,屬于方程的是( )
a、b、c、d、
(2)下列方程中,屬于一元一次方程的是( )
a、b、c、d、
(3)甲、乙兩隊開展足球?qū)贡荣悾?guī)定每隊勝一場得3分,平一場得1分,負一場得0分。甲隊與乙隊一共進行了10場比賽,且甲隊保持了不敗記錄,甲隊一共得22分。求甲隊勝了多少場?平了多少場?
解:設(shè)甲隊勝了 場,則平了 場,依題意可列得方程:
解得 =
答:甲隊勝了 場,平了 場。
(4)根據(jù)條件“一個數(shù) 比它的一半大2”可列得方程為
(5)根據(jù)條件“某數(shù) 的 與2的差等于最大的一位數(shù)”可列得方程為
四、課外作業(yè)p151習(xí)題5.1
數(shù)學(xué)一元一次方程教案篇八
一元一次方程教學(xué)設(shè)計
教學(xué)目的
1.通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。
2.使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。
3.會判斷一個數(shù)是不是某個方程的解。
重點、難點
1.重點:會列一元一次方程解決一些簡單的應(yīng)用題。
2.難點:弄清題意,找出“相等關(guān)系”。
教學(xué)過程
一、復(fù)習(xí)提問
小學(xué)里已經(jīng)學(xué)過列方程解簡單的應(yīng)用題,讓我們回顧一下,如何列方程解應(yīng)用題?
例如:一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?
解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得
1.2x=6
因為1.2×5=6,所以小紅能買到5本筆記本。
二、新授:
我們再來看下面一個例子:
問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的客車多少輛?
問:你能解決這個問題嗎?有哪些方法?
(讓學(xué)生思考后,回答,教師再作講評)
算術(shù)法:(328-64)÷44=264÷44=6(輛)
列方程解應(yīng)用題:
設(shè)需要租用x輛客車,那么這些客車共可乘44x人,加上乘坐校車的64人,就是全體師生328人,可得。
44x+64=328 (1)
解這個方程,就能得到所求的結(jié)果。
問:你會解這個方程嗎?試試看?
(學(xué)生可能利用逆運算求解,教師加以肯定,同時指出本章里我們將要學(xué)習(xí)解方程的另一種方法。)
問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的.年齡是我年齡的三分之一?”
小敏同學(xué)很快說出了答案。“三年”。他是這樣算的:
1年后,老師46歲,同學(xué)們的年齡是14歲,不是老師的三分之一。
2年后,老師47歲,同學(xué)們的年齡是15歲,也不是老師的三分之一。
3年后,老師48歲,同學(xué)們的年齡是16歲,恰好是老師的三分之一。
你能否用方程的方法來解呢?
通過分析,列出方程:13+x= (45+x) (2)
問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?
這個方程不像例l中的方程(1)那樣容易求出它的解,小敏同學(xué)的方法啟發(fā)了我們,可以用嘗試,檢驗的方法找出方程(2)的解。也就是只要將x=1,2,3,4,……代人方程(2)的兩邊,看哪個數(shù)能使兩邊的值相等,這個數(shù)就是這個方程的解。
把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,
因為左邊=右邊,所以x=3就是這個方程的解。
這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。
問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?
同學(xué)們動手試一試,大家發(fā)現(xiàn)了什么問題?
同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?
這正是我們本章要解決的問題。
三、鞏固練習(xí)
1.教科書第3頁練習(xí)1、2。
2.補充練習(xí):檢驗下列各括號內(nèi)的數(shù)是不是它前面方程的解。
(1)x-3(x+2)=6+x ?(x=3,x=-4)
(2)2y(y-1)=3 ?(y=-1,y= 2)
(3)5(x-1)(x-2)=0 ?(x=0,x=1,x=2)
四、小結(jié)。本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。
五、作業(yè)。教科書第3頁,習(xí)題6.1第1、3題。
6.2解一元一次方程
1.方程的簡單變形
教學(xué)目的
通過天平實驗,讓學(xué)生在觀察、思考的基礎(chǔ)上歸納出方程的兩種變形,并能利用它們將簡單的方程變形以求出未知數(shù)的值。
重點、難點
1.重點:方程的兩種變形。
2.難點:由具體實例抽象出方程的兩種變形。
教學(xué)過程
一、引入
上一節(jié)課我們學(xué)習(xí)了列方程解簡單的應(yīng)用題,列出的方程有的我們不會解,我們知道解方程就是把方程變形成x=a形式,本節(jié)課,我們將學(xué)習(xí)如何將方程變形。
二、新授
讓我們先做個實驗,拿出預(yù)先準(zhǔn)備好的天平和若干砝碼。
測量一些物體的質(zhì)量時,我們將它放在天干的左盤內(nèi),在右盤內(nèi)放上砝碼,當(dāng)天平處于平衡狀態(tài)時,顯然兩邊的質(zhì)量相等。
如果我們在兩盤內(nèi)同時加入相同質(zhì)量的砝碼,這時天平仍然平衡,天平兩邊盤內(nèi)同時拿去相同質(zhì)量的砝碼,天平仍然平衡。
如果把天平看成一個方程,課本第4頁上的圖,你能從天平上砝碼的變化聯(lián)想到方程的變形嗎?
讓同學(xué)們觀察圖6.2.1的左邊的天平;天平的左盤內(nèi)有一個大砝碼和2個小砝碼,右盤上有5個小砝碼,天平平衡,表示左右兩盤的質(zhì)量相等。如果我們用x表示大砝碼的質(zhì)量,1表示小砝碼的質(zhì)量,那么可用方程x+2=5表示天平兩盤內(nèi)物體的質(zhì)量關(guān)系。
數(shù)學(xué)一元一次方程教案篇九
本節(jié)課是人教版七年級上冊第三章第一節(jié)的內(nèi)容,主要的教學(xué)目標(biāo)是使學(xué)生了解什么是方程,什么是一元一次方程;體會字母表示數(shù)的好處,體會從算式到方程是數(shù)學(xué)的一大進步;會將實際問題抽象為數(shù)學(xué)問題,通過找相等關(guān)系列方程解決問題。方程的概念在小學(xué)階段已經(jīng)出現(xiàn)過,如何讓學(xué)生在已有的知識基礎(chǔ)上更高一個層次認識方程、運用方程呢?我的教學(xué)策略是:
第一步,創(chuàng)造一個問題情境引發(fā)學(xué)生的認知失衡。
第二步,通過一個生活實例讓學(xué)生進行思考、分析、總結(jié)歸納出新知識。
第三步,介紹新知識的文化背景,對學(xué)生進行數(shù)學(xué)文化的滲透,同時為學(xué)習(xí)有關(guān)概念進行鋪墊。
第四步,通過講練結(jié)合的方式突破本節(jié)課的難點――找相等關(guān)系列方程。
現(xiàn)對本節(jié)課的教學(xué)過程進行反思:
一、成功之處
成功之一:能創(chuàng)設(shè)一個有趣的問題情境。我沒有直接采用課本的引題,而是用一個更有趣的、與數(shù)學(xué)家有關(guān)的問題引入。一開始上課,我就跟同學(xué)們說:“讓我們來進行一個比賽,看誰最先解決這個問題:我國數(shù)學(xué)家張廣厚小時候曾解過一道有趣的‘吃面包’問題:一個大人一餐吃4個面包,四個小孩一餐合吃1個面包?,F(xiàn)有大人和小孩共100人,一餐剛好吃完100個面包。聰明的同學(xué)們,你們能求出大人和小孩各有多少人?”初一的學(xué)生仍然保持著小學(xué)生一樣的學(xué)習(xí)熱情,每個學(xué)生都樂于表現(xiàn)自己,比賽的形式在小學(xué)課堂上經(jīng)常用,初中的課堂仍然可以使用,這樣有助于保持學(xué)生參與學(xué)習(xí)的積極性。
成功之二:能進行一題多變,引發(fā)學(xué)生的認知失衡。我前面所提出的問題學(xué)生們很容易用小學(xué)所學(xué)的算術(shù)解法進行解答,但是我將問題中的100個面包改為40個面包,讓同學(xué)們再比賽,很快有一個同學(xué)舉手套用前面的解題思路來解這道題,但是在回答問題的過程中就有同學(xué)發(fā)現(xiàn):假設(shè)1個大人4個小孩分成1組,每組可以吃5個面包,那么吃40個面包需要8組,這8組共有8個大人,32個小孩,他們的和是40而不是100,不符合題目要求。這時同學(xué)們都陷入沉思,他們努力尋找新方法。很快,有一個學(xué)生用方程的方法圓滿地解決了這道題,這時大部分學(xué)生都想起了上小學(xué)時學(xué)習(xí)過用方程的方法解應(yīng)用題,只不過小學(xué)階段更強調(diào)算術(shù)解法的訓(xùn)練,很少使用方程,這一道題讓他們體會到用方程解決應(yīng)用題的好處,使他們認識到有進一步學(xué)習(xí)方程的必要性。
成功之三:對學(xué)生進行了數(shù)學(xué)文化的滲透。方程的概念在小學(xué)已經(jīng)出現(xiàn)過,初一再次學(xué)習(xí)方程應(yīng)該讓學(xué)生們更高一個層次認識方程,因此通過介紹字母表示未知數(shù)的文化背景,在文化層面上讓學(xué)生進一步理解數(shù)學(xué)、喜愛數(shù)學(xué),展示數(shù)學(xué)的文化魅力。
成功之四:分層次設(shè)置練習(xí)題,逐步突破難點。初一學(xué)生在解應(yīng)用題時,主要存在三個方面的困難:
(1)抓不住相等關(guān)系;
(2)找出相等關(guān)系后不會列方程;
(3)習(xí)慣用算術(shù)解法,對用代數(shù)方法分析應(yīng)用題不適應(yīng)。
其中,第一個方面是主要的,解決了它,另兩個方面就都好解決了。為此我在“練一練”的環(huán)節(jié)里設(shè)置了a與b兩組練習(xí),a組練習(xí)的題目已經(jīng)幫學(xué)生設(shè)定了未知數(shù),重點訓(xùn)練學(xué)生找相等關(guān)系、列方程;b組練習(xí)的題目要求學(xué)生獨立設(shè)未知數(shù)列方程,要求學(xué)生能突破用算術(shù)解法解應(yīng)用題的思維定勢,學(xué)會通過閱讀題目、理解題意、進而找出等量關(guān)系、列出方程解決問題的方法。
成功之五:恰當(dāng)使用了多媒體教學(xué)設(shè)備。在課件制作上考慮到初一學(xué)生的年齡特點,使用了許多卡通動畫效果,有效地吸引學(xué)生的注意力。多媒體設(shè)備的使用不僅大大地提高了課堂容量,而且還可以展示學(xué)生的作品(課堂練習(xí)的解答),及時糾正學(xué)生書面表達的錯誤,規(guī)范解題格式,改掉小學(xué)生重結(jié)果輕過程,解題格式不規(guī)范,解題步驟混亂等不良現(xiàn)象。
成功之六:營造了寬松、和諧的課堂氛圍。本節(jié)課的教學(xué)從始至終,教師都是面帶笑容地與學(xué)生進行互動,讓學(xué)生充分發(fā)表自己的看法,及時給學(xué)生鼓勵與肯定,消除學(xué)生由小學(xué)升入初中因環(huán)境變化而引起的心里障礙,激活學(xué)生的思維,保持學(xué)生參與課堂學(xué)習(xí)的積極性。
二、不足之處
不足之一:問題2設(shè)置的難度過高。因為問題2是課本的一個引題,課前我考慮到這一題雖然有一點難度,但是這題的解法有很多種,既可以用算術(shù)解法,也可以用方程解法,還可以依據(jù)不同的等量關(guān)系列出不同的方程,這是一道很好的引題。在教學(xué)過程中,盡管我用非常形象的動畫(多媒體課件)展示了題目的含義,但是大部分學(xué)生仍然面對題目的一大堆文字表述不知所措,這表明初一學(xué)生的數(shù)學(xué)閱讀與數(shù)學(xué)理解能力還不強。
不足之二:教學(xué)容量偏大,以致沒有充分的時間引導(dǎo)學(xué)生對如何找相等關(guān)系進行總結(jié)歸納。本節(jié)課在引出一元一次方程的概念以后,設(shè)計了一組判斷題對一元一次方程的概念進行辨析。課后我想到這節(jié)課的難點是如何找相等關(guān)系列方程,應(yīng)該淡化概念,如果刪去這道練習(xí)題就可以讓學(xué)生有更充分的時間去總結(jié)歸納找相等關(guān)系的方法,從而突破本節(jié)課的難點。
不足之三:對學(xué)生情況不夠熟悉。因為本節(jié)課是初一學(xué)生入學(xué)后一個月進行的,所以我對許多學(xué)生還叫不出名字,雖然課堂上可以用手指著某某同學(xué)回答問題,但是課后仔細想來,做好中小學(xué)數(shù)學(xué)教學(xué)的銜接工作不僅僅是教學(xué)內(nèi)容設(shè)計上的銜接,而應(yīng)該是多方位的銜接,其中就包括教師應(yīng)盡快了解、熟悉學(xué)生,這樣可以幫助消除學(xué)生剛升入初中的許多不適應(yīng)。
三、對中小學(xué)數(shù)學(xué)教學(xué)銜接的思考
(1)加強新舊知識的聯(lián)系
初中的許多數(shù)學(xué)知識都是小學(xué)知識的延續(xù)與提高,因此要搞好中小學(xué)數(shù)學(xué)教學(xué)真正意義上的銜接,每一位教師都應(yīng)該熟悉并掌握《數(shù)學(xué)課程標(biāo)準(zhǔn)》的教材體系,而且我們還要認識到處理好中小學(xué)數(shù)學(xué)教學(xué)的銜接問題并非只是小學(xué)與初一老師的事情,其實整個中學(xué)階段有很多的知識點都是在小學(xué)的知識基礎(chǔ)上進行拓展和延伸的,如初二學(xué)習(xí)的“軸對稱”及“等腰三角形”的知識在小學(xué)都出現(xiàn)過。
(2)滲透數(shù)學(xué)文化的教育,保持學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
從小學(xué)到初中,教學(xué)內(nèi)容更抽象,更加符號化,有一些學(xué)生在努力學(xué)習(xí)數(shù)學(xué)的同時,逐漸地厭煩、冷漠?dāng)?shù)學(xué),這主要是應(yīng)試教育環(huán)境下的數(shù)學(xué)教學(xué),對數(shù)學(xué)知識的積累、數(shù)學(xué)技巧的訓(xùn)練等工具性價值的過分關(guān)注,使數(shù)學(xué)學(xué)習(xí)越來越枯燥無味,所以我們教師應(yīng)該讓學(xué)生一進入中學(xué)的課堂,就展現(xiàn)給學(xué)生一個多姿多彩的數(shù)學(xué)世界,在課堂教學(xué)中時時體現(xiàn)數(shù)學(xué)作為一種人類文化的魅力,保持住學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣。
(3)營造寬松、和諧的課堂氛圍。
學(xué)生剛?cè)氤踔袝r,由于環(huán)境和教學(xué)的對象變了,教師要消除學(xué)生的心理障礙,讓學(xué)生處在一種自由寬松的環(huán)境,達到師生和諧、融洽的狀態(tài),這樣學(xué)生的思維容易被激活,學(xué)生在課堂上敢想、敢說,學(xué)生參與課堂教學(xué)的積極性就高。
(4)在保持小學(xué)的良好學(xué)習(xí)習(xí)慣的基礎(chǔ)上指導(dǎo)科學(xué)的學(xué)習(xí)方法。
剛從小學(xué)升上初一,小學(xué)里的許多良好的學(xué)習(xí)習(xí)慣應(yīng)該繼續(xù)保持.如:上課坐姿端正,答題踴躍,聲音響亮,積極舉手發(fā)言等。但是在小學(xué)階段大多數(shù)學(xué)生認為學(xué)數(shù)學(xué)就是做作業(yè),對課前預(yù)習(xí)、課后及時復(fù)習(xí)、獨立思考、概括整理數(shù)學(xué)學(xué)習(xí)筆記等往往不重視,因此,在教學(xué)過程中,必須逐步培養(yǎng)學(xué)生掌握科學(xué)的學(xué)習(xí)方法,對書面練習(xí)還要加強規(guī)范化書寫,改掉小學(xué)生重結(jié)果輕過程,解題格式不規(guī)范、解題步驟混亂等不良現(xiàn)象。
數(shù)學(xué)一元一次方程教案篇十
一元一次方程數(shù)學(xué)教學(xué)反思
本章的內(nèi)容包括等式的基本性質(zhì),一元一次方程的概念、解法和應(yīng)用,其中一元一次方程的解法是本章的主要內(nèi)容,而建立一元一次方程模型解決實際問題是本章知識的重點和難點。
一、本章知識的學(xué)習(xí)流程圖:
二、基礎(chǔ)性目標(biāo)總結(jié):
一元一次方程是最基本的代數(shù)方程,對它的理解和掌握對于后續(xù)學(xué)習(xí)(其他的方程、不等式以及函數(shù)等)具有重要的基礎(chǔ)作用。因此,在教學(xué)中我們要注意打好基礎(chǔ),對本章中的基礎(chǔ)知識和基本技能、能力等進行及時的歸納整理,安排必要的、適量的練習(xí),使得學(xué)生對基礎(chǔ)知識留下較深刻的印象,對基本技能達到一定的掌握程度,發(fā)展基本能力。通過本章的學(xué)習(xí),學(xué)生達到了以下的基礎(chǔ)目標(biāo):
1、了解一元一次方程及其相關(guān)概念;
2、理解等式的基本性質(zhì);
3、了解解方程的基本目標(biāo),熟悉解一元一次方程的一般步驟,掌握一元一次方程的解法;
4、清楚列方程解決實際問題的基本步驟,會利用一元一次方程解決一些常見的實際問題。
三、發(fā)展性目標(biāo)總結(jié):
在對本章知識的學(xué)習(xí)時,教師在教授知識的同時,也應(yīng)注意知識形成的過程,讓學(xué)生從中體會知識之間的相互聯(lián)系,感受數(shù)學(xué)的`實際價值,從而培養(yǎng)學(xué)生的學(xué)習(xí)能力。同過本章的學(xué)習(xí),學(xué)生基本上要達到以下目標(biāo):
1.經(jīng)歷“把實際問題抽象為一元一次方程”的過程,能夠“列出一元一次方程表示問題中的等量關(guān)系”,體會方程是刻畫現(xiàn)實世界中等量關(guān)系的一種有效的數(shù)學(xué)模型。
2.通過觀察、對比和歸納,探索等式的性質(zhì),能利用它們探究一元一次方程的解法。
3.通過探究解一元一次方程的一般步驟,體會其中蘊涵的化歸思想。
四、融通性目標(biāo)總結(jié):
1、突出建摸思想,實際問題作為大背景貫穿全章。
在本章中,課本安排了許多有代表性的實際問題作為知識的發(fā)生、發(fā)展的背景材料,實際問題始終貫穿于全章,對方程、一元一次方程概念的引入和對它們的解法的討論,都是通過提出實際問題,為解決實際問題需要建立一元一次方程模型,然后求解一元一次方程這樣的過程進行學(xué)習(xí)的。
2、注重知識的前后聯(lián)系,強調(diào)通過比較來認識新事物。
本章在是在學(xué)習(xí)了有理數(shù)和整式的加減運算后進行學(xué)習(xí)的。整式的有關(guān)知識是方程變形的基礎(chǔ),同時學(xué)好一元一次方程為后續(xù)的一次方程不等式、其他方程以及函數(shù)的學(xué)習(xí)打好了堅實的基礎(chǔ)。
3、加強探究性學(xué)習(xí)。
促進學(xué)習(xí)方式的轉(zhuǎn)變,加強學(xué)習(xí)的主動性和探究性,是課程改革的目的之一。本章中有許多實際問題,豐富多彩的問題情境和解決實際問題的快樂可以激發(fā)學(xué)生對數(shù)學(xué)的興趣。在本章的教學(xué)中,應(yīng)注意引導(dǎo)學(xué)生從身邊的問題研究起,主動收集尋找“現(xiàn)實的、有意義的、富有挑戰(zhàn)性的”學(xué)習(xí)材料,并更多地進行數(shù)學(xué)活動和互相交流,在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,培養(yǎng)能力,體會數(shù)學(xué)思想方法。通過探究學(xué)習(xí)激發(fā)學(xué)生積極思維,鼓勵多種探究方法,促成活躍的探究氛圍,提高課堂學(xué)習(xí)的效果。
五、教學(xué)中的幾點思考
1、在本章教學(xué)時,由實際問題到具體知識,再討論具體知識,這一順序知識的自然形成過程一致,但剛開始教學(xué)時很多老師感覺思路比較亂,反映出對教學(xué)目標(biāo)和重難點的把握不是很準(zhǔn)確,通過教學(xué)研討,確定整章的主線是通過建立一元一次方程模型來解決實際問題,那么由問題中產(chǎn)生具體的知識,再對知識的探究應(yīng)該是符合學(xué)生的認知規(guī)律的。為了在一堂課中更加突出重點,在學(xué)習(xí)解法的時候,對實際問題的分析和研究應(yīng)該略講,首先要抓好基礎(chǔ)的落實,一定要有足夠的時間、適當(dāng)?shù)木毩?xí)讓學(xué)生掌握一元一次的解法。在學(xué)習(xí)了解法的基礎(chǔ)上,后續(xù)的學(xué)習(xí)應(yīng)該對實際問題的分析和研究進行必要的歸納總結(jié),這樣才能使學(xué)生真正掌握好本章知識。
2、由于學(xué)生在上個學(xué)段學(xué)習(xí)了簡單的方程,所以學(xué)生對一元一次方程已經(jīng)有了一定情況的了解。根據(jù)實際情況反映,小學(xué)教師對這一部分知識的教學(xué)要求比較高,大多數(shù)學(xué)生學(xué)習(xí)起來比較輕松,所以在解法學(xué)習(xí)時間安排上,有5個課時的時間是主要研究解法的,有2個課時的時間是主要研究和歸納如何利用一元一次方程解決一些十分熟悉的實際問題的。
3、在實際教學(xué)中,老師普遍反映學(xué)習(xí)利用一元一次方程解決實際問題時,學(xué)生的分層十分明顯,學(xué)習(xí)基礎(chǔ)好的學(xué)生能較快達到學(xué)習(xí)目標(biāo)。但對學(xué)習(xí)基礎(chǔ)不好的學(xué)生,則是一件十分困難的事情。個人認為在教學(xué)中要突出對實際問題的分析,強調(diào)列代數(shù)式,即如果把問題中的某個量用一個字母表示之后,對于問題中的其余的量,要求都能要關(guān)于這個字母的代數(shù)式表示。在分析的過程中,為了更清楚的找到問題中各個量之間的關(guān)系,可以適時地介紹利用圖形和表格的方法去分析問題中的數(shù)量關(guān)系。
4、在落實一元一次方程的解法時,注意要有適當(dāng)?shù)闹貜?fù)練習(xí),才能發(fā)現(xiàn)學(xué)生的問題并加以糾正,但是要注意避免學(xué)生陷入機械的重復(fù)訓(xùn)練。在教學(xué)中如果把解方程的本質(zhì)和其中的算法和算理講清楚的話,很多時候通過作業(yè)反饋,學(xué)生能夠較熟練地掌握一元一次方程的解法的。
六、章末目標(biāo)檢測說明
本章單元測試設(shè)計了2份檢測題,測試(a)主要是對基礎(chǔ)性目標(biāo)的檢測,測試(b)則適當(dāng)加大了對發(fā)展性目標(biāo)與融通性目標(biāo)的檢測的比重。
數(shù)學(xué)一元一次方程教案篇十一
設(shè)計理念
課程改革的目的之一是促進學(xué)習(xí)方式的轉(zhuǎn)變,加強學(xué)習(xí)的主動性和探究性,引導(dǎo)學(xué)生從身邊的問題研究開始,主動尋找“現(xiàn)實的、有意義的、富有挑戰(zhàn)性的”學(xué)習(xí)材料,并更多地進行數(shù)學(xué)活動和互相交流.在主動學(xué)習(xí)、探究學(xué)習(xí)的過程中獲得知識,培養(yǎng)能力,體會數(shù)學(xué)思想方法.使學(xué)生經(jīng)歷建立一元一次方程模型并應(yīng)用它解決實際問題的過程,體會方程的作用,掌握運用方程解決簡單問題的方法,提高分析問題、解決問題的能力,增強創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識.
教材分析
本節(jié)的重點是建立實際問題的方程模型,通過探究活動,可以進一步體驗一元一次方程與實際生活的密切關(guān)系,加強數(shù)學(xué)建模思想,培養(yǎng)學(xué)生運用一元一次方程分析和解決實際問題的能力.由于本節(jié)問題的背景和表達都比較貼近生活實際,所以在探究過程中正確建立方程是主要難點,突破難點的關(guān)鍵是弄清問題的背景,分析清楚有關(guān)數(shù)量關(guān)系,特別是找出可以作為列方程依據(jù)的主要相等關(guān)系.切實提高學(xué)生利用方程解決實際問題的能力.
學(xué)情分析
從“課程標(biāo)準(zhǔn)”看,在前面學(xué)段中已有關(guān)于簡單方程的內(nèi)容,學(xué)生已經(jīng)對方程有初步的認識,會用方程表示簡單情境中的數(shù)量關(guān)系,會解簡單的方程.即對于方程的認識已經(jīng)經(jīng)歷了入門階段,具有一定的感性認識基礎(chǔ).但學(xué)生在探究過程中遇到困難時,教師應(yīng)啟發(fā)誘導(dǎo),設(shè)計必要的鋪墊,讓學(xué)生在經(jīng)歷過自己的努力來克服困難的過程中體驗如何進行探究活動,而不是代替他們思考,不要過早給出答案,應(yīng)鼓勵探究多種不同的分析問題和解決問題的方法,使探究過程活躍起來,在這樣的氛圍中可以更好地激發(fā)學(xué)生積極思考,使其獲得更大的收獲.
教學(xué)目標(biāo)
知識與技能:
1.用一元一次方程解決實際問題.
2.會通過移項、合并同類項解一元一次方程.
3.知道用一元一次方程解決實際問題的基本過程.
數(shù)學(xué)思考:
1.會將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過列方程解決問題.
2.體會數(shù)學(xué)應(yīng)用的價值.
解決問題:
會設(shè)未知數(shù),并能利用問題中的相等關(guān)系列方程,對于列出的方程能用“移項”等方法來解決手機收費問題,進一步了解用方程解決實際問題的基本過程.
情感與態(tài)度:
通過學(xué)習(xí),使學(xué)生更加關(guān)注生活,增強用數(shù)學(xué)的意識,從而激發(fā)其學(xué)習(xí)數(shù)學(xué)的熱情.
教學(xué)重、難點
重點:會用一元一次方程解決實際問題.
難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,通過列方程解決問題.
教學(xué)方法
采用探究、合作、交流等教學(xué)方式完成教學(xué).
教學(xué)媒體
采用多種媒體輔助教學(xué).
教學(xué)流程
一、創(chuàng)設(shè)情境,導(dǎo)入新課(觀看大屏幕)
小明的爸爸新買了一部手機,他從電信公司了解到現(xiàn)在有兩種移動電話計費方式:用“全球通”每月收月租費50元,此外根據(jù)累計通話時按0.40元/分加收通話費;用“神州行”沒有月租,按0.60元/分收通話費.小明的爸爸不知道該怎么辦?你們想探究這個問題嗎?誰能給出主意?
[設(shè)計意圖:由于移動電話(手機)在我國已很普及,選擇經(jīng)濟實惠的收費方式很有現(xiàn)實意義,以這個問題形式出現(xiàn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,使學(xué)生能很有興趣來探索這個問題.]
二、學(xué)習(xí)新課,探究新知
展現(xiàn)問題:
小明的爸爸新買了一部手機,他從電信公司了解到現(xiàn)有兩種移動電話計費方式:
他正為選擇哪一種方式猶豫呢?你能幫助他做出選擇嗎?
[設(shè)計意圖:本例通過表格形式給出已知數(shù)據(jù),先了解實際背景,類似這樣用表格表達數(shù)量關(guān)系的實際問題很多,因此注意培養(yǎng)學(xué)生這方面的讀題能力.]
(一)算一算:
一個月通話200分鐘,按兩種計費方式各需交費多少元?300分鐘呢?
通話時間,全球通,神州行
[設(shè)計意圖:這里用表格形式給出答案,便于學(xué)生對后面問題的分析.]
(二)議一議:
(1)累計通話t分鐘,用“全球通”收費多少元?
(2)累計通話t分鐘,用“神州行”收費多少元?
(3)對于某個通話時間,兩種計費方式的收費會一樣嗎?
[設(shè)計意圖:通過討論,先給學(xué)生感性認識,再從具體到抽象,用字母來表示,其中的相等關(guān)系便可以找到了.]
(三)解一解:
設(shè)累計通話t分鐘,兩種計費方式的收費會一樣.
則:
0.6t=50+0.4t,
移項,得0.6t-0.4t=50,
合并,得0.2t=50,
系數(shù)化為1,得t=250.
由上可知,如果一個月通話250分鐘,那么兩種計費方式的收費相同.
[設(shè)計意圖:列出方程后,實際問題轉(zhuǎn)化為數(shù)學(xué)問題了,至此,本問題已得到初步解決,讓學(xué)生練習(xí)解方程的技能.]
(四)想一想:
怎樣選擇計費方式更省錢呢?(可分組交流)如果一個月內(nèi)累計通話時間不足250分鐘,那么選擇“神州行”收費少;如果一個月內(nèi)累計通話時間超過250分鐘,那么選擇“全球通”收費少.
[設(shè)計意圖:這個選擇是開放性的,答案與通話時間有關(guān),應(yīng)根據(jù)通話時間與250分鐘的大小關(guān)系作出選擇.]
(五)試一試:
根據(jù)以上解題過程,你能為小明的爸爸做選擇了嗎?如果小明的爸爸活動較多,與外界的聯(lián)系一定不少,手機使用時間肯定多于250分鐘,那么,他應(yīng)該選擇“全球通”,否則選擇“神州行”.
[設(shè)計意圖:這個選擇是個拓展性思維問題,要根據(jù)小明爸爸業(yè)務(wù)活動的多少而定,培養(yǎng)學(xué)生解決生活中的實際問題的能力.]
(六)猜一猜:
假如你爸爸也遇到同樣問題,請為你爸爸作出選擇?
[設(shè)計意圖:通過類似問題的回答,可以培養(yǎng)學(xué)生用數(shù)學(xué)的意識,體會到數(shù)學(xué)的使用價值。]
三、鞏固訓(xùn)練,能力提升
1.方程6x+a=12與3x+1=6的解相同,則a=。
a.1b.2c.3d.4
2.某蔬菜生產(chǎn)基地10月份上市青菜x萬千克,11月份上市青菜是10月份的4倍還多5萬千克,那么兩個月份共上市青菜()萬千克。
a.3x+3b.4x+4
c.5x+5d.6x+6
3.一列火車長為150米,以每秒15米的速度通過600米隧道,從火車進入隧道算起到這列火車完全通過隧道所需時間是()秒。
a.30b.40c.50d.60
4.有一根竹竿和一條繩子,竹竿比繩子短2米,把繩子對折后比竹竿短1.5米,則竹竿長()米.
a.3b.4c.5d.6
5.三個數(shù)的比是5∶6∶7,它們的和是198,則這三個數(shù)分別是()。
a.33、44、55b.44、55、66
c.55、66、77d.66、77、88
[設(shè)計意圖:通過體驗解決問題的全過程,形成解決問題的一些基本策略,發(fā)展實踐能力和創(chuàng)新精神,進一步體會小組活動在數(shù)學(xué)中的作用。]
四、知識回顧,歸納總結(jié)
1.不同層次學(xué)生對本節(jié)知識認知程度(可談收獲及感受);
2.用一元一次方程分析和解決實際問題的基本過程(師生共同總結(jié))。
[設(shè)計意圖:結(jié)合例題的具體過程,幫助學(xué)生加深認識,培養(yǎng)在現(xiàn)實生活中應(yīng)用數(shù)學(xué)的意識,使學(xué)生把所學(xué)知識進一步系統(tǒng)化。]
五、布置作業(yè),鞏固新知
1.基礎(chǔ)作業(yè):教材84頁第4題,85頁第10題。
2.課外探究:某學(xué)校在暑假將帶領(lǐng)該校“科技能手”去北京旅游,甲旅行社說:“如果校長買全票,則其余學(xué)生可以享受半價優(yōu)惠”;乙旅行社說:“包括校長在內(nèi),全部按全票價6折優(yōu)惠”;若全票價為40元.
(1)如果學(xué)生為3人或7人時,兩個旅行社各收費多少?
(2)學(xué)生數(shù)為多少時,兩家旅行社的收費一樣?
[設(shè)計意圖:及時了解學(xué)生學(xué)習(xí)效果,調(diào)整教學(xué)安排,通過課后探究,獨立思考,自我評價學(xué)習(xí)效果,使得基礎(chǔ)知識和基本技能在頭腦中留下較深刻的印象。
數(shù)學(xué)一元一次方程教案篇十二
【教學(xué)背景】:
本課是針對人民教育出版社出版的《七年級數(shù)學(xué)上冊》第三章一元一次方程中3。4實際問題與一元一次方程(行程問題應(yīng)用題歸類解析——追及問題)設(shè)計的內(nèi)容。
【教學(xué)目標(biāo)】:
(一)知識與技能:
1、使學(xué)生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟;
2、熟練掌握追及問題中的等量關(guān)系。
(二)過程與方法
培養(yǎng)學(xué)生觀察能力,提高他們分析問題和解決實際問題的能力。
(三)情感態(tài)度價值觀:
培養(yǎng)學(xué)生勤于思考、樂于探究、敢于發(fā)表自己觀點的學(xué)習(xí)習(xí)慣,從實際問題中體驗數(shù)學(xué)的價值。體會觀察、分析、歸納對數(shù)學(xué)知識中獲取數(shù)學(xué)信息的重要作用,進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,能在獨立思考和小組交流中獲益。
【教學(xué)重難點】:
1、重點:找等量關(guān)系列一元一次方程,解決追及問題。
2、難點:將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,并找出等量關(guān)系。
【教學(xué)方法】:
探究式
【教學(xué)過程】:
一、創(chuàng)設(shè)問題情景,引入新課:
1、行程問題中有哪些基本量?它們間有什么關(guān)系?
2、行程問題有哪些基本類型?
二、知識應(yīng)用,拓展創(chuàng)新:
行程問題應(yīng)用題是中小學(xué)數(shù)學(xué)應(yīng)用題中很重要的一類,學(xué)生難以理解,不容易掌握。行程問題的題型千變?nèi)f化,導(dǎo)致許多學(xué)生感到束手無策,難以適從。其實認真分析,就會發(fā)現(xiàn)行程問題應(yīng)用題主要有三種基本類型:追及問題、相遇問題和航行問題,而且三個基本量之間的基本關(guān)系“路程=速度×?xí)r間”保持不變。
三、例題講解
例1(同時不同地)甲乙兩人相距100米,甲在前每秒跑3米,乙在后每秒跑5米。兩人同時出發(fā),同向而行,幾秒后乙能追上甲?
分析:在這個直線型追及問題中,兩人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑100米,而兩人跑步所用的時間是相同的。所以有等量關(guān)系:乙走的路程—甲走的路程=100
解:設(shè)x秒后乙能追上甲
根據(jù)題意得5x—3x=100
解得x=50
答:50秒后乙能追上甲。
小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)中的同時不同地問題,以后遇到此類題,該如何解決。
例2(同地不同時)兩匹馬賽跑,黃色馬的速度是5m/s,棕色馬的速度是6m/s。如果讓黃色馬先跑1s,棕色馬再開始跑,幾秒后可以追上黃色馬?
分析:這個問題中,由于黃色馬先跑1s(此時棕色馬未出發(fā)),經(jīng)過1s后棕色馬再開始出發(fā)和黃色馬同向而行,后來棕色馬追上黃色馬了。因此兩馬所跑路程是相同的,但由于黃色馬先跑了1秒,所以就產(chǎn)生了路程差,那么這個問題就和前面例1一樣了。也可以這樣想:棕色馬的路程=黃色馬的路程+相隔距離。
解:設(shè)x秒后,棕色馬追上黃色馬,根據(jù)題意,得6x=5x+5解得x=5答:5秒后,棕色馬可以追上黃色馬。
小結(jié):針對本題進行小結(jié)、歸納,它屬于行程問題應(yīng)用題(追及問題)中的同地不同時問題。
歸納小結(jié):列方程解應(yīng)用題的一般步驟:
審—通過審題明確已知量、未知量,找出等量關(guān)系;
設(shè)—設(shè)出合理的未知數(shù)(直接或間接);
列—依據(jù)找到的等量關(guān)系,列出方程;
解—求出方程的解;
驗—檢驗求出的值是否為方程的解,并檢驗是否符合實際問題;
答—注意單位名稱。
練一練:(環(huán)形跑道問題)甲乙兩人在一條長400米的環(huán)形跑道上跑步,甲的速度是每分鐘跑360米,乙的速度是每分鐘跑240米。兩人同時同地同向跑,幾秒后兩人第一次相遇?
分析:本題屬于環(huán)形跑道上的追及問題,兩人同時同地同向而行,第一次相遇時,速度快者比速度慢者恰好多跑一圈,即等量關(guān)系為:甲走的路程—乙走的路程=400
解答由學(xué)生完成。
本節(jié)知識歸納:
1、追及問題的特點是同向而行,在直線運動中兩者路程之差等于兩者間的距離;
2、而在圓周運動中,若同時同地同向出發(fā),則二者路程之差等于跑道的周長。
3 、用示意圖輔助分析數(shù)量間的關(guān)系便于我們列方程。
四、作業(yè)布置:(見補充題)
【課后反思】:
通過本節(jié)課的學(xué)習(xí),使學(xué)生進一步掌握列一元一次方程解應(yīng)用題的方法和步驟,并能熟練尋找追及問題中的等量關(guān)系,列出方程,解決追及問題。
數(shù)學(xué)一元一次方程教案篇十三
七年級《3.1.1 一元一次方程》教學(xué)設(shè)計
教學(xué)目標(biāo)
1、了解方程的概念和一元一次方程的概念;
2、知道什么是解方程,會檢驗?zāi)硞€值是不是方程的解;
3、培養(yǎng)學(xué)生根據(jù)問題尋找等量關(guān)系、根據(jù)等量關(guān)系列出方程的能力。
教學(xué)重點
1、一元一次方程的概念及方程的解;
2、能驗證一個數(shù)是否是一個方程的解。
教學(xué)難點
尋找問題中的等量關(guān)系,列出方程。
教學(xué)過程
一、情景誘導(dǎo)
同學(xué)們:世界上最大的.動物是藍鯨,一頭藍鯨重124t,比一頭大象體重的25倍少1t,你能計算出這頭大象的體重嗎?
如果設(shè)大象的體重為x t,藍鯨的體重應(yīng)如何表示呢?怎樣解決這個問題呢?(學(xué)生思考并回答:25x-1=124,)我們把這個式子給它起個名字,叫一元一次方程,這就是我們今天要學(xué)習(xí)的一元一次方程(板書課題),那——什么叫做一元一次方程——呢?,請同學(xué)們帶著這些問題,閱讀課本114頁-115頁練習(xí)前的內(nèi)容,對照課本找出自學(xué)提綱里問題的答案。
要求:先完成得請你幫幫沒有完成的同學(xué),不會做的同學(xué)請教會做的同學(xué)。
二、自學(xué)指導(dǎo)
學(xué)生自學(xué)課本,并完成自學(xué)提綱。老師可以先進行板書準(zhǔn)備,再到學(xué)生中進行巡視指導(dǎo),掌握學(xué)生的學(xué)習(xí)狀況,為展示歸納做準(zhǔn)備。
附:自學(xué)提綱: 1、什么是方程?請舉出1—2個例子。未知數(shù)通常用什么表示?
2、什么是一元一次方程?請舉出1—2個例子。
3、在課本“例1”中,你知道這些方程中等號兩邊各表示什么意思嗎?
4、什么是方程的解?x=1和x=-1中哪一個是方程x+3=2的解?為什么?
5、什么是解方程?
三、展示歸納
1、請有問題的同學(xué)逐個回答自學(xué)提綱中的問題,生說師寫;
2、發(fā)動學(xué)生進行評價、補充、完善;
3、教師根據(jù)展示情況進行必要的講解和強調(diào)。
四、變式練習(xí)
1、2題口答,要求說理由;其它各題,先讓學(xué)生獨立完成,教師做必要的板書準(zhǔn)備后,巡回指導(dǎo),了解情況,再讓學(xué)生匯報結(jié)果,并請同學(xué)評價、完善,然后教師根據(jù)需要進行重點強調(diào)。
附:變式練習(xí)
1、下列各式中,哪些是一元一次方程?
(1) 5x=0; (2) 1+3x ; (3) x2=4+x ; (4) x+y=5 ; (5)3m+2=1-m ; (6)x+2>1
(7) 《3.1.1一元一次方程》教學(xué)設(shè)計(修改稿和原稿) =1
2、請你說出一元一次方程2x=4的解是———,解是x=-2的一元一次方程: 。
3、已知關(guān)于x的方程2x 《3.1.1一元一次方程》教學(xué)設(shè)計(修改稿和原稿) +3=0為一元一次方程,求k的值。
4、練習(xí)本每本0.8元,小明拿了10元錢買了y本,找回4.4元,列方程是
5、設(shè)某數(shù)為x,根據(jù)題意列出方程,不必求解:
(1)某數(shù)比它的2倍小3;
(2)某數(shù)與5的差比它的2倍少11;
(3)把某數(shù)增加它的10%后恰為80.
6、若x=1是方程kx-1=0的解,則k= .
五、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí)你學(xué)到了什么?還有沒有要提醒同學(xué)們注意的?(學(xué)生進行自主小結(jié),再由教師概括總結(jié))。
六、布置作業(yè)
課本83頁習(xí)題3.1 第1題。
數(shù)學(xué)一元一次方程教案篇十四
教學(xué)設(shè)計思想:
本節(jié)內(nèi)容須兩個課時向?qū)W生講授,主要是講授去括號法則和去分母的方法,以及解一元一次方程的程序。教師在講授新課時都可以通過一些具體的實例來引入課題,再逐步的把知識灌輸給學(xué)生。第一課時是通過買布問題列出一元一次方程,通過要求方程的解來把去括號法則這知識傳授給學(xué)生;第二課時則是由一個歷史留下來的一個問題引入從而學(xué)習(xí)去分母的方法。在掌握了具體知識的基礎(chǔ)上再通過講解例題加深對知識的鞏固。
教學(xué)目標(biāo):
1.知識與技能
敘述去括號的法則;學(xué)會去分母的方法;
掌握解一元一次方程的全部程序。
2.過程與方法
應(yīng)用去括號法則及去分母的方法解一元一次方程;
會通過列方程解決實際問題,并會將含有分母的方程化歸成已經(jīng)熟悉的方程;
會化歸的方法,掌握解方程得程序化方法。
3.情感、態(tài)度及價值觀
體會方程的思想;
埃及古題帶來新情景,新情景引入新問題,激發(fā)探究欲望。
教學(xué)重點:
解一元一次方程的全部程序。
教學(xué)難點:
熟練的解一元一次方程和列方程解實際問題。
教學(xué)方法:引導(dǎo)式。
教學(xué)安排:2課時。
教具準(zhǔn)備:幻燈片。
第一課時
教學(xué)過程:
一、復(fù)習(xí)引入
教師提問,學(xué)生回答。
1.合并。
2.移項的定義及移項的法則。
3.解簡單一元一次方程的步驟。
二、新課講授
ⅰ. 請同學(xué)們先來看下面的這個問題
問題(買布問題)顧客用540盧布買了兩種布料共138俄尺,其中藍布料每俄尺3盧布,黑布料每俄尺5盧布,兩種布料各買了多少?
師:請同學(xué)們用方程來解這道題!
生:設(shè)買了藍布料x俄尺,那么買了黑布料138x俄尺,買藍布料花了3x盧布,買黑布料花了5(138-x)盧布。
相等關(guān)系:兩種布料共用了540盧布,列得方程
3x+5(138-x)=540.
師:如何解這個方程呢?也就是把這個方程如何轉(zhuǎn)化成x=a的形式呢?
下面我們用框圖表示解這個方程的具體過程:
由上可知,買了75俄尺藍布料和63俄尺黑布料。
教師總結(jié):(去括號法則)括號外的因數(shù)是正數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相同。括號外的因數(shù)是負數(shù),去括號后各項的符號與原括號內(nèi)相應(yīng)各項的符號相反。
ⅱ.例題分析
例1 一艘船從甲碼頭到乙碼頭順流行駛,用了2小時;從乙碼頭返回甲碼頭逆流行駛,用了2.5小時。已知水流的速度是3千米/時,求船在靜水中的平均速度。
分析:一般情況下可以認為這艘船往返的路程相等。
解:設(shè)船在靜水中的平均速度為x千米/時,則順流速度為(x+3)千米/時,逆流速度為(x3)千米/時。
根據(jù)往返路程相等,列得
2(x+3)=2.5(x3).
去括號,得
2x+6=2.5x-7.5.
移項及合并,得
0.5x=13.5
x=27
答:船在靜水中的平均速度為27千米/時。
例2 某車間22名工人生產(chǎn)螺釘和螺母,每人每天平均生產(chǎn)螺釘1200個或螺母個,一個螺釘要配兩個螺母。為了使每天的產(chǎn)品剛好配套,應(yīng)該分配多少名工人生產(chǎn)螺釘,多少名工人生產(chǎn)螺母?
分析:為了使每天的產(chǎn)品剛好配套,應(yīng)使生產(chǎn)的螺母數(shù)量是螺釘數(shù)量的2倍。
解:設(shè)分配x名工人生產(chǎn)螺釘,其余(22x)名工人生產(chǎn)螺母。
根據(jù)螺母數(shù)量與螺釘數(shù)量的關(guān)系,列得
21200x=2000(22-x)
去括號,得
2400x=44000-2000x
移項及合并,得
4400x=44000
x=10
生產(chǎn)螺母的人數(shù)為22-x=12。
答:應(yīng)分配10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母。
ⅲ.布置作業(yè)
習(xí)題2.3 1、2
板書設(shè)計:
課題
一、復(fù)習(xí)引入 2.例題
例1
二、新課 例2
1.提出問題
去括號法則
第二課時
教學(xué)過程:
一、復(fù)習(xí)
去括號的法則
二、新課
1.引入
英國倫敦博物館保存著一部極其珍貴的文物紙莎草文書,這是古代埃及人用象形文字寫在一種特殊的草上的著作,它于公元前17左右寫成,至今已有三千七百多年。這部書中記載了許多有關(guān)數(shù)學(xué)的問題,其中有如下一道著名的求未知數(shù)的問題。
2.提出問題
問題: 一個數(shù),它的三分之二,它的一半,它的七分之一,它的全部,加起來總共是33。
師:用方程解這道題
生:
師:像上面這樣的方程中有些系數(shù)是分?jǐn)?shù),那我們?nèi)绾谓饽?
學(xué)生思考,教師引導(dǎo)。如果能化去分母,把系數(shù)化成整數(shù),則可以使解方程中的計算方便些。
下面我們更全面的討論問題,以方程 為例??纯唇庥蟹?jǐn)?shù)系數(shù)的一元一次方程的步驟。
教師引導(dǎo):等式兩邊乘同一個數(shù),結(jié)果仍相等。由此能否去分母呢?
這個方程中各分母的最小公倍數(shù)是10,方程兩邊同乘10,于是方程左邊變?yōu)?/p>
去了分母,方程右邊變?yōu)槭裁?我們可以具體算算了。
下面我們用框圖表示解這個方程的具體過程:
教師總結(jié):
(1)(去括號的方法)方程各項都乘以所有分母的最小公倍數(shù)。依據(jù)是等式的性質(zhì)2。
(2)解一元一次方程的程序:去分母去括號移項合并同類項系數(shù)化為1。
3.例題分析
例3 整理一批圖書,由一個人做要40小時完成?,F(xiàn)在計劃由一部份人先做4小時,再增加2人和他們一起做8小時,完成這項工作。假設(shè)這些人的工作效率相同,具體應(yīng)先安排多少人工作?
分析:這里可以把總工作量看作1。
解:設(shè)先安排x人工作4小時,根據(jù)兩段工作量之和應(yīng)是總工作量,得
去分母,得
4x+8(x+2)=40
去括號,得
4x+8x+16=40
移項及合并,得
12x=24
x=2
答:應(yīng)先安排2名工人工作4小時。
4.布置作業(yè)
習(xí)題2.3 3、4、5
板書設(shè)計:
數(shù)學(xué)一元一次方程教案篇十五
課題
一元一次方程與實際問題——配套問題
課型
習(xí)題課
教材
人教版
對象
初一學(xué)生
執(zhí)教者
教材分析
作為實際問題中的重要部分,配套問題是學(xué)生進入實際問題的關(guān)鍵環(huán)節(jié)。在對一元一次方程的解法進行了充分學(xué)習(xí)之后,如何將剛學(xué)到的知識投入到學(xué)習(xí)中是至關(guān)重要的過程,這決定了學(xué)生的學(xué)習(xí)質(zhì)量與思維拓展。盡管在方程解法的學(xué)習(xí)中學(xué)生已經(jīng)思考并嘗試將其投入到實際問題的解決中,但往往這樣的投入是在為學(xué)習(xí)方程解法服務(wù)。在這一部分,學(xué)生將進一步練習(xí)如何將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用方程將其合理解決。
學(xué)情分析
對于學(xué)生而言,盡管已經(jīng)學(xué)習(xí)了方程的解法,但是在面對一些實際問題時,很多學(xué)生依然不習(xí)慣使用方程方法,而是依然使用小學(xué)的算數(shù)方法,雖然在一些簡單的問題中,算數(shù)方法更有優(yōu)勢,計算更簡便,但是在本節(jié)課以及之后的一些實際問題中,使用算數(shù)方法將無從下手或非常復(fù)雜,因此學(xué)習(xí)如何使用一元一次方程來解決實際問題成為本階段的重點。
教學(xué)目標(biāo)
1、基本會用一元一次方程解決配套問題;
2、培養(yǎng)學(xué)生運用一元一次方程分析和解決實際問題的能力;
3、體現(xiàn)一元一次方程與實際生活的密切聯(lián)系,滲透建模和轉(zhuǎn)化的數(shù)學(xué)思想。
教學(xué)重點
用一元一次方程解決配套問題
教學(xué)難點
分析配套問題數(shù)量關(guān)系,尋找等量關(guān)系列出方程
教學(xué)過程
教學(xué)環(huán)節(jié)
教學(xué)內(nèi)容
預(yù)設(shè)意圖
創(chuàng)設(shè)情景
提出問題
復(fù)習(xí)鞏固:解此方程:x-2(x-3)=3x+5(x-1)(3min)
例1:某車間有22名工人,每人每天可以生產(chǎn)1200個螺釘或20xx個螺母.1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,應(yīng)安排生產(chǎn)螺釘和螺母的工人各多少名?(12min)
問題1:思考解決實際問題的步驟應(yīng)該是什么?
審題(抓信息)-找關(guān)系(等量關(guān)系)-列方程(用含未知數(shù)的式子)-解決問題
問題2:在此題目中,每天生產(chǎn)的螺釘數(shù)量與每天生產(chǎn)的螺母數(shù)量該怎么表示?
(每天生產(chǎn)的螺釘數(shù)量=生產(chǎn)螺釘?shù)墓と藬?shù)量×每人每天可以生產(chǎn)的螺釘數(shù)量,同理每天生產(chǎn)的螺母數(shù)量=生產(chǎn)螺母的工人數(shù)量×每人每天可以生產(chǎn)的螺母數(shù)量)
問題3:根據(jù)題目,每天生產(chǎn)的螺釘和螺母如果想剛好配套,它們之間應(yīng)該滿足怎樣的數(shù)量關(guān)系?
(每1個螺釘需要配2個螺母,則,即2×螺釘數(shù)量=1×螺母數(shù)量)
問題4:總結(jié)以上關(guān)系,思考我們應(yīng)該設(shè)怎樣的未知數(shù)才更方便于解決這個問題?
(由問題2和問題3,得:螺釘工人數(shù)×每人生產(chǎn)螺釘數(shù)×2=螺母工人數(shù)×每人生產(chǎn)螺母數(shù),其中每人生產(chǎn)螺釘數(shù)與螺母數(shù)均已知,則需要找到螺釘工人數(shù)與螺母工人數(shù)之間的關(guān)系,又總?cè)藬?shù)為22人,則螺母工人數(shù)=22-螺釘工人數(shù),設(shè)螺釘工人數(shù)為x即可)
問題5:根據(jù)以上分析,此方程可以如何列出?
從解方程開始,復(fù)習(xí)鞏固方程的解法,并引出實際問題的解決方法,在此過程中,將問題逐步拆解,分解為一個個小的問題,再層層遞進,得出最后的答案,在此過程中逐步感受配套問題乃至實際問題的基本思路。
探究歸納
變式探究:(僅需列出方程)
1、若每1個螺釘與3個螺母配成一套,則需要怎么安排生產(chǎn)螺釘和螺母的工人?
2、若每2個螺釘與3個螺母配成一套,則需要怎樣安排生產(chǎn)螺釘和螺母的工人?
3、若每n個螺釘與m個螺母配成一套,則螺釘數(shù)量與螺母數(shù)量之間是什么關(guān)系?(8min)
思考:解決配套問題中,我們應(yīng)該怎樣尋找數(shù)量關(guān)系?
從已有的知識結(jié)構(gòu)出發(fā),不讓學(xué)生在思維上出現(xiàn)跳躍,逐層遞進,通過剛思考過的例子作為依據(jù),進行相同類型題目的變式聯(lián)系,將探究作為切入點,再對一般的情況進行歸納總結(jié),從具體的數(shù)字到一般的情況,逐步推進,體會將未知化為已知的數(shù)學(xué)探究的樂趣。
跟蹤練習(xí)
例2.某家具廠生產(chǎn)一種方桌,1立方米的木材可做50個桌面或300條桌腿,現(xiàn)有10立方米的木材,怎樣分配生產(chǎn)桌面和桌腿使用的木材,才能使桌面、桌腿剛好配套,共可生產(chǎn)多少張方桌?(一張方桌有1個桌面,4條桌腿)
思考:等量關(guān)系是什么?如何設(shè)未知數(shù)并列出方程?(5min)
解:設(shè)用x立方米的木材做桌面,則用(10-x)立方米的木材做桌腿。
根據(jù)題意,得4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌為50×6=300(張)。
答:用6立方米的木材做桌面,4立方米的木材做桌腿,可做300張方桌。
例3.服裝廠要生產(chǎn)一批某種型號的學(xué)生服,已知每3米布料可做上衣2件或褲子3條,計劃用600米布料生產(chǎn)學(xué)生服,應(yīng)該分別用多少米布料生產(chǎn)上衣或褲子恰好配套?(一件上衣配一條褲子)(5min)
解:設(shè)用x米布料生產(chǎn)上衣,那么用(600-x)米布料生產(chǎn)褲子恰好配套。
根據(jù)題意,得:
x=600-x,解得:x=360,則600-x=600-360=240(米)。
答:應(yīng)該用360米布料生產(chǎn)上衣,用240米布料生產(chǎn)褲子恰好配套。
在得出一般化的方法后,再利用學(xué)到的知識對問題進行解決,這是數(shù)學(xué)學(xué)習(xí)的一般辦法,也是解決問題的重要手段,在實際問題這一部分的學(xué)習(xí)中,這樣的思考尤為重要。
課堂小結(jié)
課外作業(yè)
總結(jié):本節(jié)課你有哪些收獲?(2min)
1、思路上,對解決實際問題的一般方法有了大致的感受,對于配套問題的等量關(guān)系的.尋找有了方向,體會了用方程解決實際問題的便利性。
2、方法上,體會如何利用題目給的信息并分析題目的含義,合理地設(shè)未知數(shù)來解決實際性的問題。
當(dāng)堂檢測:(5min)
完成《課堂小練習(xí)》
作業(yè):
限時作業(yè)一張
讓學(xué)通過自己的語言表達學(xué)習(xí)的收獲,在本節(jié)課即將結(jié)束的時候,讓學(xué)生自我總結(jié),加深印象,培養(yǎng)學(xué)生的自我總結(jié)能力,也幫助學(xué)生重新回顧重點知識和數(shù)學(xué)思想。
板書設(shè)計
一元一次方程與實際問題——配套問題
例1:
解:設(shè)應(yīng)安排x名工人生產(chǎn)螺釘,(22-x)名工人生產(chǎn)螺母
依題意,得
20xx(22-x)=2×1200x
解方程,得x=10.
所以22-x=12
答:應(yīng)安排10名工人生產(chǎn)螺釘,12名工人生產(chǎn)螺母
配套問題數(shù)量關(guān)系:若每n個螺釘與m個螺母配成一套,則m×螺釘數(shù)量=n×螺母數(shù)量
數(shù)學(xué)一元一次方程教案篇十六
1、教學(xué)內(nèi)容分析
電話計費問題是生活中的常見問題。具有一定的現(xiàn)實性和開放性。生活中的數(shù)學(xué)問題大多是具有開放性的綜合問題。所以對這類問題的探究是數(shù)學(xué)回歸生活,服務(wù)于生活的需要。本節(jié)課是實際問題與一元一次方程的最后一課。設(shè)置這一探究的目的不僅是解決這個具體問題。而是通過這個問題的解決過程,讓學(xué)生進一步體驗建模解題的過程。
2、學(xué)習(xí)者分析
學(xué)生通過之前的學(xué)習(xí)。比較熟悉在一些典型問題中用方程模型。而對于電話計費問題這樣的綜合性問題。還缺乏解決問題的經(jīng)驗。容易無所適從或片面理解。
3、學(xué)習(xí)目標(biāo)確定
知識目標(biāo):進一步培養(yǎng)學(xué)生列方程解應(yīng)用題的能力。
情感目標(biāo):通過探究實際問題與一元一次方程的關(guān)系,感受數(shù)學(xué)的應(yīng)用價值,提高分析問題、解決問題的能力。
4、學(xué)習(xí)重點和難點。
重點:引導(dǎo)學(xué)生弄清題意,設(shè)計出各類問題的答案。
難點:把生活中的實際問題抽象成數(shù)學(xué)問題。
5、學(xué)習(xí)評價設(shè)計
新課程理念強調(diào)“經(jīng)歷過程與獲取結(jié)論同樣重要",對數(shù)學(xué)知識的獲得來說,過程比結(jié)論更有意義。我們不能把學(xué)生看成是一個“容器”,盡可能往里面塞知識,也不能把學(xué)生訓(xùn)練成只會解題的“機器”,而應(yīng)該讓他們投入到知識的獲取過程中去。在過程中徼發(fā)學(xué)生學(xué)習(xí)興趣和動機,展現(xiàn)他們得讓思路和方法,使他們學(xué)會學(xué)習(xí);進而從過程中建構(gòu)進取型人格,通過過程中的“成就感”來完善自我。這是目前學(xué)生最需要的。因此本節(jié)課我采用“問題—探究—發(fā)現(xiàn)”的探究性教學(xué)方式。
在學(xué)法指導(dǎo)上,本節(jié)課主要通過學(xué)生自主探索,概括出單項式及其相關(guān)概念。在課堂。上充分體現(xiàn)了學(xué)生的主體性地位和學(xué)生學(xué)習(xí)的規(guī)律,及發(fā)現(xiàn)知識一探索知識——掌握知識一運用知識的學(xué)習(xí)過程。
6、學(xué)習(xí)活動設(shè)計
教師活動
學(xué)生活動
環(huán)節(jié)一(根據(jù)課堂教育學(xué)的程序安排)
教師活動1
問題導(dǎo)學(xué):
下表中有兩種移動電話計費方式:
月使用
費/元
主叫限定
時間/分
主叫超時費/
(元/分)
被叫方式一
58
150
0.25
免費
方式二
88
350
0.19
免費
考慮下列問題:
(1)設(shè)一個月內(nèi)用移動電話主叫為t分(t是正整數(shù)).根據(jù)上表,列表說明:當(dāng)t在不同時間范圍內(nèi)取值時,按方式一和方式二如何計費.
(2)觀察你的列表,你能從中發(fā)現(xiàn)如何根據(jù)主叫時間選擇省錢的計費方式嗎?通過計算驗證你的看法.
教師提出問題:
1、從表格中的數(shù)據(jù),你能把主叫時間分為幾部分?
2、你能分別把主叫時間不同的話費情況用含t的代數(shù)式表示出來嗎?
3、(1)在兩種收費方式下,會不會有這么一個時間,打不同樣多時間的電話,卻收費相同呢?
(2)如果有這一時間,那么如何分別表示收費表達式呢?(“收費相等”是本題列方程的等量關(guān)系)
4、你能根據(jù)表格判斷兩種收費方式哪種更合算嗎?
學(xué)生活動:
教師提問,學(xué)生思考回答。教師對回答的方向適當(dāng)給予提示。如月使用費的比較,超時費的比較等。然后,教師舉出一兩個具體的主叫時間,讓學(xué)生通過簡單計算回答相應(yīng)的費用。
活動意圖說明
通過提問和學(xué)生的回答,了解學(xué)生對表格信息的理解能力。引導(dǎo)學(xué)生對。表格信息做初步梳理和簡單加工。通過對幾個容易計算的主叫時間的話費計算,檢驗學(xué)生是否理解表格信息的含義,并滲透話費多少與主叫時間相關(guān)。
環(huán)節(jié)二
教師活動2
(1)學(xué)生充分交流討論后完成表格:
主叫時間(t/min)
方式一(計費/元)
方式二(計費/元)
t<150
58
88
t=150
58
88
150<t<350
58+0.25(t-150)
88
t=350
58+0.25(350-150)=108
88
t>350
58+0.25(t-150)
88+0.19(t-350)
(2)觀察上表,可以看出,主叫時間超出限定時間越長,計費越多,并且隨著主叫時間的變化,按哪種方式的計費少也會變化。
①從表格中,可以看出當(dāng)t≤150時,按方式一的計費少。
②當(dāng)t從150增加到350時,按方式一的計費由58元增加到108元,而方式二一直是88元,所以方式一在變化過程中,可能某一主叫時間,兩種方式的計費相等。列方程58+0.25(t-150)=88,解得t=270。故當(dāng)t=270時,兩種計費方式相同,都是88元,當(dāng)150<t<270時,按方式一計費少于按方式二計費;當(dāng)270<t<350時,按方式一計費多于按方式二計費。
③當(dāng)t=350時,按方式二計費少。
④當(dāng)t>350時,可以看出,按方式一的計費為108元加上超出350 min的部分超時費0.25(t-350),按方式二的計費為88元加上超時費0.19(t-350),故按方式二的計費少。
根據(jù)以上的分析,可以發(fā)現(xiàn)當(dāng)t<270 min時,選擇方案一省錢;當(dāng)t>270 min時,選擇方案二省錢。
學(xué)生活動2
理解問題的本身是列方程的基礎(chǔ),本例通過表格形式給出已知數(shù)據(jù),讓學(xué)生根據(jù)問題展開討論,幫助理解,培養(yǎng)學(xué)生的讀題能力和收集信息的能力.
活動意圖說明
學(xué)生對電話計費問題是有生活基礎(chǔ)的,所以也具備一定的認識基礎(chǔ),再給出探究問題之后讓學(xué)生充分的發(fā)言。表達自己對問題的直觀認識,這也是學(xué)生對問題的第一次認識,在此基礎(chǔ)上,學(xué)生之間通過發(fā)表意見互相借鑒,為對問題的進一步探究進行準(zhǔn)備。
環(huán)節(jié)三
教師活動3
練習(xí):課件習(xí)題練習(xí)
學(xué)生活動3
教師提出問題,學(xué)生思考并制作表格,教師巡視。
活動意圖說明:學(xué)生在參考了其他學(xué)生的觀點之后,再次對問題進行認識,其認識過程與結(jié)論已經(jīng)逐步接近正確而合理的方向,教師在此基礎(chǔ)上加以引導(dǎo)和啟發(fā),幫助學(xué)生確立分類討論的探究方式,并在總結(jié)學(xué)生發(fā)言的基礎(chǔ)上歸納出分類的關(guān)鍵點。使學(xué)生的學(xué)習(xí)由感性認識逐步過渡到理性認識。
7、板書設(shè)計
(1)設(shè)一個月內(nèi)用移動電話主叫為t分(t是正整數(shù))。根據(jù)上表,列表說明:當(dāng)t在不同時間范圍內(nèi)取值時,按方式一和方式二如何計費。
(2)觀察你的列表,你能從中發(fā)現(xiàn)如何根據(jù)主叫時間選擇省錢的計費方式嗎?通過計算驗證你的看法。
8、教學(xué)反思與改進:
創(chuàng)設(shè)問題情境,聯(lián)系生活實際,激發(fā)學(xué)習(xí)動機,將學(xué)生置于問題情境中.鼓勵學(xué)生動手動口,增強學(xué)生的自主學(xué)習(xí)能力,而且讓學(xué)生從數(shù)學(xué)的角度去分析和總結(jié)生活中的問題,學(xué)會能在不同的角度去探求生活經(jīng)驗從而讓學(xué)生掌握知識。