人的記憶力會隨著歲月的流逝而衰退,寫作可以彌補記憶的不足,將曾經(jīng)的人生經(jīng)歷和感悟記錄下來,也便于保存一份美好的回憶。大家想知道怎么樣才能寫一篇比較優(yōu)質(zhì)的范文嗎?以下是我為大家搜集的優(yōu)質(zhì)范文,僅供參考,一起來看看吧
數(shù)學中考知識點公式篇一
1、一元二次方程3x2+5x-2=0的常數(shù)項是-2。
2、一元二次方程3x2+4x-2=0的一次項系數(shù)為4,常數(shù)項是-2。
3、一元二次方程3x2-5x-7=0的二次項系數(shù)為3,常數(shù)項是-7。
4、把方程3x(x-1)-2=-4x化為一般式為3x2-x-2=0。
1、直角坐標系中,點a(3,0)在y軸上。
2、直角坐標系中,x軸上的任意點的橫坐標為0。
3、直角坐標系中,點a(1,1)在第一象限。
4、直角坐標系中,點a(-2,3)在第四象限。
5、直角坐標系中,點a(-2,1)在第二象限。
1、當x=2時,函數(shù)y=的值為1。
2、當x=3時,函數(shù)y=的值為1。
3、當x=-1時,函數(shù)y=的值為1。
1、函數(shù)y=-8x是一次函數(shù)。
2、函數(shù)y=4x+1是正比例函數(shù)。
3、函數(shù)是反比例函數(shù)。
4、拋物線y=-3(x-2)2-5的開口向下。
5、拋物線y=4(x-3)2-10的對稱軸是x=3。
6、拋物線的頂點坐標是(1,2)。
7、反比例函數(shù)的圖象在第一、三象限。
1、數(shù)據(jù)13,10,12,8,7的平均數(shù)是10。
2、數(shù)據(jù)3,4,2,4,4的眾數(shù)是4。
3、數(shù)據(jù)1,2,3,4,5的中位數(shù)是3。
1、cos30°=。
2、sin260°+cos260°=1。
3、2sin30°+tan45°=2。
4、tan45°=1。
5、cos60°+sin30°=1。
1、半圓或直徑所對的圓周角是直角。
2、任意一個三角形一定有一個外接圓。
3、在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
4、在同圓或等圓中,相等的圓心角所對的弧相等。
5、同弧所對的圓周角等于圓心角的一半。
6、同圓或等圓的半徑相等。
7、過三個點一定可以作一個圓。
8、長度相等的兩條弧是等弧。
9、在同圓或等圓中,相等的圓心角所對的弧相等。
10、經(jīng)過圓心平分弦的直徑垂直于弦。
1、直線與圓有唯一公共點時,叫做直線與圓相切。
2、三角形的外接圓的圓心叫做三角形的外心。
3。弦切角等于所夾的弧所對的圓心角。
4、三角形的內(nèi)切圓的圓心叫做三角形的內(nèi)心。
5、垂直于半徑的直線必為圓的切線。
6、過半徑的外端點并且垂直于半徑的直線是圓的切線。
7、垂直于半徑的直線是圓的切線。
8、圓的切線垂直于過切點的半徑。
數(shù)學中考知識點公式篇二
(?。讉€二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以后,再看被開方數(shù)是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數(shù)及根指數(shù)有關(guān),而與根號外的因式無關(guān)。
合并同類二次根式的理論依據(jù)是逆用乘法對加法的分配律,合并同類二次根式,只把它們的系數(shù)相加,根指數(shù)和被開方數(shù)都不變,不是同類二次根式的不能合并。
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合并,合并的方法為系數(shù)相加,根式不變。
運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,后乘除,最后加減,有括號的先算括號內(nèi)的。
乘除法中,系數(shù)相乘,被開方數(shù)相乘,與兩根式是否是同類根式無關(guān),加減法中,系數(shù)相加,被開方數(shù)不變而且兩根式須是同類最簡根式。
(1)關(guān)系式為整式時,函數(shù)定義域為全體實數(shù);
(2)關(guān)系式含有分式時,分式的分母不等于零;
(3)關(guān)系式含有二次根式時,被開放方數(shù)大于等于零;
(4)關(guān)系式中含有指數(shù)為零的式子時,底數(shù)不等于零;
(5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。
(1)根據(jù)已知條件寫出含有待定系數(shù)的函數(shù)關(guān)系式;
(2)將x、y的幾對值或圖像上的幾個點的坐標代入上述函數(shù)關(guān)系式中得到以待定系數(shù)為未知數(shù)的方程
(3)解方程得出未知系數(shù)的值;
(4)將求出的待定系數(shù)代回所求的函數(shù)關(guān)系式中得出所求函數(shù)的解析式。
1、不在同一直線上的三點確定一個圓。
2、垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧。
推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧。
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧。
推論2圓的兩條平行弦所夾的弧相等。
3、圓是以圓心為對稱中心的中心對稱圖形。
4、圓是定點的距離等于定長的點的集合。
5、圓的內(nèi)部可以看作是圓心的距離小于半徑的點的集合。
6、圓的外部可以看作是圓心的距離大于半徑的點的集合。
7、同圓或等圓的半徑相等。
8、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等。
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
數(shù)學中考知識點公式篇三
相似形
重點相似三角形的判定和性質(zhì)
☆內(nèi)容提要☆
一、本章的兩套定理
第一套(比例的有關(guān)性質(zhì)):
涉及概念:①第四比例項②比例中項③比的前項、后項,比的內(nèi)項、外項④黃金分割等。
第二套:
注意:①定理中“對應(yīng)”二字的含義;
②平行相似(比例線段)平行。
二、相似三角形性質(zhì)
1.對應(yīng)線段…;2.對應(yīng)周長…;3.對應(yīng)面積…。
三、相關(guān)作圖
①作第四比例項;②作比例中項。
四、證(解)題規(guī)律、輔助線
1.“等積”變“比例”,“比例”找“相似”。
2.找相似找不到,找中間比。方法:將等式左右兩邊的比表示出來。
3.添加輔助平行線是獲得成比例線段和相似三角形的重要途徑。
4.對比例問題,常用處理方法是將“一份”看著k;對于等比問題,常用處理辦法是設(shè)“公比”為k。
5.對于復(fù)雜的幾何圖形,采用將部分需要的圖形(或基本圖形)“抽”出來的辦法處理。
數(shù)學中考知識點公式篇四
第一次月考已經(jīng)結(jié)束,同學們是否還沉浸在考試成功的喜悅與考試失利的悲傷中?不管你考的好與壞,那都不重要了,重要的是你要通過這次月考發(fā)現(xiàn)自己在哪些方面還存在問題。
還有不到一個月的時間初三第一次大考——期中考試就要到了,一定要改掉上次的不足,爭取期中考試的好成績。
我現(xiàn)在對如何備戰(zhàn)初三數(shù)學期中考試談一下我的看法,希望能對同學們有所幫助。
首先同學們要趕快走出上次月考成功的喜悅與失敗的陰影,初三考的不僅僅是你的學習,而且需要過硬的心態(tài),不能被一時的成功沖昏頭腦,更不能因一時的失敗而喪失信心。
其次上課一定注意聽講,因為現(xiàn)在每個學校的進度都非??欤R點又非常難,相信很多同學都跟不上老師的進度,那上課一定注意聽講,把不會的知識點在課上記下來,課下一定要主動問老師。
一定要注意老師上課講的題是最精華,一定要弄懂?,F(xiàn)在是初學不在乎你做多少題,關(guān)鍵在于你會多少題。一定要準備錯題本,反復(fù)看,只要你能保證再出現(xiàn)以前錯過的題不再出錯,那我相信你的成績會非常理想的。
還有就是盡可能找一下學校去年的試卷自己檢測一下自己,看看自己還有那些問題。
因為我們知道期中考試的難點有二次函數(shù),所以最后把二次函數(shù)當中經(jīng)??嫉念}型和大家分享一下:
二次函數(shù):
1.求二次函數(shù)解析式。
(1)當出現(xiàn)任意三個點坐標的時候,直接帶入求出解析式。
(2)當出現(xiàn)(x1,0),(x2,0)的時候,用雙根式求解析式。
(3)當出現(xiàn)(h,k)時,就用頂點式求解析式。
2.根據(jù)函數(shù)圖象判斷正負(a,b,c,a+b+c,a-b+c,2a+b)
a看開口方向(a>0開口向上,a<0開口向下),b看對稱軸(左同右異,a和b共同決定對稱軸),c看與y軸交點(c>0交y軸正半軸,=0過原點,<0交負半軸),a+b+c看當x=1時所對應(yīng)的y值正負,a-b+c看當x=-1時所對應(yīng)的y值正負,2a+b看對稱軸。
數(shù)學中考知識點公式篇五
圓的知識:平面上一條線段,繞它的一端旋轉(zhuǎn)360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點為圓心
(2)如定義(2)中,繞的那一端的端點為圓心。
(3)圓任意兩條對稱軸的交點為圓心。
(4) 垂直于圓內(nèi)任意一條弦且兩個端點在圓上的線段的二分點為圓心。
注:圓心一般用字母o表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母c表示。
圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù)(無理數(shù)),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母s表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
數(shù)學中考知識點公式篇六
直線(straight line)是幾何學基本概念,是點在空間內(nèi)沿相同或相反方向運動的軌跡。或者定義為:曲率最小的曲線(以無限長為半徑的圓弧)。
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。
求兩條直線的交點,只需把這兩個二元一次方程聯(lián)立求解,當這個聯(lián)立方程組無解時,二直線平行;有無窮多解時,二直線重合;只有一解時,二直線相交于一點。常用直線與 x 軸正向的夾角( 叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于x軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。
在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
空間直線的方向用一個與該直線平行的非零向量來表示,該向量稱為這條直線的一個方向向量。直線在空間中的位置, 由它經(jīng)過的空間一點及它的一個方向向量完全確定。在歐幾里得幾何學中,直線只是一個直觀的幾何對象。在建立歐幾里得幾何學的公理體系時,直線與點、平面等都是不加定義的,它們之間的關(guān)系則由所給公理刻畫。
在非歐幾何中直線指連接兩點間最短的線,又稱短程線。
方向向量:截取直線l上兩點a(l,n,0)和b(k+l,m+n,1)方向向量為:ab=(k,m,1)
數(shù)學中考知識點公式篇七
對弧、弦、圓周角等概念理解不深刻,特別是弦所對的圓周角有兩種情況要特別注意,兩條弦之間的距離也要考慮兩種情況。(選題最后一題考)
對垂徑定理的理解不夠,不會正確添加輔助線運用直角三角形進行解題。
對切線的定義及性質(zhì)理解不深,不能準確的利用切線的性質(zhì)進行解題以及對切線的判定方法兩種方法使用不熟練。
考查圓與圓的位置關(guān)系時,相切有內(nèi)切和外切兩種情況,包括相交也存在兩圓圓心在公共弦同側(cè)和異側(cè)兩種情況,學生很容易忽視其中的一種情況。(25題分類討論)
與圓有關(guān)的位置關(guān)系把握好d與r和r+r,r-r之間的關(guān)系以及應(yīng)用上述的方法求解。
圓周角定理是重點,同弧(等弧)所對的圓周角相等,直徑所對的圓周角是直角。直角的圓周角所對的弦是直徑,一條弧所對的圓周角等于它所對的圓心角的一半。
幾個公式一定要牢記:三角形、平行四邊形、菱形、矩形、正方形、梯形、圓的面積公式,圓周長公式,弧長,扇形面積,圓錐的側(cè)面積以及全面積以及弧長與底面周長,母線長與扇形的半徑之間的轉(zhuǎn)化關(guān)系。
數(shù)學中考知識點公式篇八
我們學習的圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線,所以是無數(shù)條對稱軸。
1 到定點的距離等于定長的點的集合叫做圓(circle).這個定點叫做圓的圓心。
2 連接圓心和圓上的任意一點的線段叫做半徑(radius)。
3 通過圓心并且兩端都在圓上的線段叫做直徑(diameter)。
4 連接圓上任意兩點的線段叫做弦(chord). 最長的弦是直徑。
5 圓上任意兩點間的部分叫做圓弧,簡稱弧(arc).大于半圓的弧稱為優(yōu)弧,優(yōu)弧是用三個字母表示。小于半圓的弧稱為劣弧,劣弧用兩個字母表示。半圓既不是優(yōu)弧,也不是劣弧。優(yōu)弧是大于180度的弧,劣弧是小于180度的弧
6 由兩條半徑和一段弧圍成的圖形叫做扇形(sector)。
7 由弦和它所對的一段弧圍成的圖形叫做弓形。
8 頂點在圓心上的角叫做圓心角(central angle)。
9 頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
10 圓周長度與圓的直徑長度的比值叫做圓周率。它是一個超越數(shù),通常用π表示,π=3.1415926535……。在實際應(yīng)用中,一般取π≈3.14。
11 圓周角等于弧所對的圓心角的一半。
圓—⊙ ; 半徑—r或r(在環(huán)形圓中外環(huán)半徑表示的字母); 弧—⌒ ; 直徑—d ;
扇形弧長—l ; 周長—c ; 面積—s。
圓的表示方法要求很嚴格,需要用到相應(yīng)的知識要求。
數(shù)學中考知識點公式篇九
1、加法:
(1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;
(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。可使用加法交換律、結(jié)合律。
2、減法:減去一個數(shù)等于加上這個數(shù)的相反數(shù)。
3、乘法:
(1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘。
(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負。
(3)乘法可使用乘法交換律、乘法結(jié)合律、乘法分配律。
4、除法:
(1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。
(2)除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。
(3)0除以任何數(shù)都等于0,0不能做被除數(shù)。
5、乘方與開方:乘方與開方互為逆運算。
6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,加、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。
數(shù)學中考知識點公式篇十
有一個角是直角的平行四邊形叫做矩形。
(1)具有平行四邊形的一切性質(zhì)(2)矩形的四個角都是直角
(3)矩形的對角線相等(4)矩形是軸對稱圖形
(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形
(3)定理2:對角線相等的平行四邊形是矩形
二次函數(shù)概念
二次函數(shù)的概念:一般地,形如ax^2+bx+c = 0的函數(shù),叫做二次函數(shù)。
這里需要強調(diào):和一元二次方程類似,二次項系數(shù)a≠0,而b,c可以為零.二次函數(shù)的定義域是全體實數(shù).
二次函數(shù)圖像與性質(zhì)口訣
二次函數(shù)拋物線,圖象對稱是關(guān)鍵;
開口、頂點和交點,它們確定圖象限;
開口、大小由a斷,c與y軸來相見,b的符號較特別,符號與a相關(guān)聯(lián);頂點位置先找見,y軸作為參考線,左同右異中為0,牢記心中莫混亂;頂點坐標最重要,一般式配方它就現(xiàn),橫標即為對稱軸,縱標函數(shù)最值見。若求對稱軸位置,符號反,一般、頂點、交點式,不同表達能互換。
1、感受生活中存在著大量的不等關(guān)系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發(fā)地尋找不等式的解,會把不等式的解集正確地表示到數(shù)軸上;
2、經(jīng)歷由具體實例建立不等模型的過程,經(jīng)歷探究不等式解與解集的不同意義的過程,滲透數(shù)形結(jié)合思想;
3、通過對不等式、不等式解與解集的探究,引導(dǎo)學生在獨立思考的基礎(chǔ)上積極參與對數(shù)學問題的討論,培養(yǎng)他們的合作交流意識;讓學生充分體會到生活中處處有數(shù)學,并能將它們應(yīng)用到生活的各個領(lǐng)域。
理解并掌握不等式的性質(zhì);
正確運用不等式的性質(zhì);
建立方程解決實際問題,會解"ax+b=cx+d"類型的一元一次方程;
尋找實際問題中的不等關(guān)系,建立數(shù)學模型;
一元一次不等式組的解集和解法。
一元一次不等式組解集的理解;
弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;
正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數(shù)軸上。
數(shù)學中考知識點公式篇十一
最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連接起來所成的式子。
:在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。
不等式分為嚴格不等式與非嚴格不等式。
一般地,用純粹的大于號、小于號“>”“<”連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)
“≥”(大于等于符號)“≤”(小于等于符號)連接的不等式稱為非嚴格不等式,或稱廣義不等式。
通常不等式中的數(shù)是實數(shù),字母也代表實數(shù),不等式的一般形式為f(x,y,……,z)≤g(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。
我們大家在判定不等式時要記得,在一個式子中的數(shù)的關(guān)系,不全是等號,含不等符號的式子,那它就是一個不等式。
數(shù)學中考知識點公式篇十二
在初中一開始,學生學習小學數(shù)學形成的某些認識會妨礙他們學習代數(shù)初步知識,使其產(chǎn)生解題錯誤。
例如,在小學數(shù)學中,解題結(jié)果常常是一個確定的數(shù)。受此影響,學生在解答下述問題時出現(xiàn)混亂與錯誤。原題是這樣的:禮堂第一排有a個座位,后面每排都比前1排多1個座位,第2排有幾個座位?第3排呢?設(shè)m為第n排的座位數(shù),那么m是多少?求a=20,n=19時,m的值。學生在解答上述問題時,受結(jié)果是確定的數(shù)的影響,把用n表示m與求m的值混為一談,暴露出其思考過程受到上述干擾的痕跡。
又如,小學數(shù)學中形成的一些結(jié)論都只是在沒有學負數(shù)的情況下成立的。在小學,學生對數(shù)之和不小于其中任何一個加數(shù),即a+ba是堅信不疑的,但是,學了負數(shù)后,a+b
再有,學生習慣于算術(shù)解法解應(yīng)用題,這會對學生學習代數(shù)方法列方程解應(yīng)用題產(chǎn)生干擾。例如,在求兩車相遇時間時(甲、乙兩站間的路程為360km,一列慢車從甲站開出,每小時行駛48km,一列快車從乙站開出,每小時行駛72km,兩列火車同時開出,相向而行,經(jīng)過多少小時相遇?),列出的“方程”為x=360/48+72.由此可以看出學生拘泥于算術(shù)解法的痕跡。而初中需要列出 48x+72x=360 這樣的方程,這表明學生對已知數(shù)和未知數(shù)之間的相等關(guān)系的把握程度。
總之,初中開始階段,學生解題錯誤的原因??勺匪莸叫W數(shù)學知識對其新學知識的影響。講清新學知識的意義(如用字母表示數(shù))、范圍(正數(shù)、0、負數(shù))、方法(代數(shù)和、代數(shù)方法) 與舊有知識(具體數(shù)字、非負數(shù)、加減運算、算術(shù)方法)的不同,有助于克服干擾,減少初始 階段的錯誤。
隨著初中知識的展開,初中數(shù)學知識本身也會前后相互干擾。
例如,在學有理數(shù)的減法時,教師反復(fù)強調(diào)減去一個數(shù)等于加上它的相反數(shù),因而3-7中7前面的符號“-”是減號給學生留下了深刻的印象。緊接著學習代數(shù)和,又要強調(diào)把3-7看成正 3與負7之和,“-”又成了負號。學生不禁產(chǎn)生到底要把“-”看成減號還是負號的困惑。這個困惑不能很好地消除,學生就會產(chǎn)生運算錯誤。
又如,了解不等式的解集以及運用不等式基本性質(zhì)3是不等式教學的一個難點,學生常常在這里犯錯誤,其原因就有受等式兩邊可以乘以或除以任何一個數(shù)以及方程的解是一個數(shù)有關(guān) .事實也證明,把不等式的有關(guān)內(nèi)容與等式及方程的相應(yīng)內(nèi)容加以比較,使學生理解兩者的異同,有助于學生學好不等式的內(nèi)容。
學生在解決單一問題與綜合問題時的表現(xiàn)也可以說明這個問題。學生在解答單一問題時,需要提取、運用的知識少,因而受到知識間的干擾小,產(chǎn)生錯誤的可能性小;而遇到綜合問題,在知識的選取、運用上受到的干擾大,容易出錯。
數(shù)學中考知識點公式篇十三
易錯點1:有理數(shù)、無理數(shù)以及實數(shù)的有關(guān)概念理解錯誤,相反數(shù)、倒數(shù)、絕對值的意義概念混淆。以及絕對值與數(shù)的分類。每年選擇必考。
易錯點2:實數(shù)的運算要掌握好與實數(shù)有關(guān)的概念、性質(zhì),靈活地運用各種運算律,關(guān)鍵是把好符號關(guān);在較復(fù)雜的運算中,不注意運算順序或者不合理使用運算律,從而使運算出現(xiàn)錯誤。
易錯點3:平方根、算術(shù)平方根、立方根的區(qū)別。填空題必考。
易錯點4:求分式值為零時學生易忽略分母不能為零。
易錯點5:分式運算時要注意運算法則和符號的變化。當分式的分子分母是多項式時要先因式分解,因式分解要分解到不能再分解為止,注意計算方法,不能去分母,把分式化為最簡分式。填空題必考。
易錯點6:非負數(shù)的性質(zhì):幾個非負數(shù)的和為0,每個式子都為0;整體代入法;完全平方式。
易錯點7:計算第一題必考。五個基本數(shù)的計算:0指數(shù),三角函數(shù),絕對值,負指數(shù),二次根式的化簡。
易錯點8:科學記數(shù)法。精確度,有效數(shù)字。這個上海還沒有考過,知道就好!
易錯點9:代入求值要使式子有意義。各種數(shù)式的計算方法要掌握,一定要注意計算順序。
易錯點1:各種方程(組)的解法要熟練掌握,方程(組)無解的意義是找不到等式成立的條件。
易錯點2:運用等式性質(zhì)時,兩邊同除以一個數(shù)必須要注意不能為0的情況,還要關(guān)注解方程與方程組的基本思想。(消元降次)主要陷阱是消除了一個帶x公因式要回頭檢驗!
易錯點3:運用不等式的性質(zhì)3時,容易忘記改不改變符號的方向而導(dǎo)致結(jié)果出錯。
易錯點4:關(guān)于一元二次方程的取值范圍的題目易忽視二次項系數(shù)不為0導(dǎo)致出錯。
易錯點5:關(guān)于一元一次不等式組有解無解的條件易忽視相等的情況。
易錯點6:解分式方程時首要步驟去分母,分數(shù)相相當于括號,易忘記根檢驗,導(dǎo)致運算結(jié)果出錯。
易錯點7:不等式(組)的解得問題要先確定解集,確定解集的方法運用數(shù)軸。
易錯點8:利用函數(shù)圖象求不等式的解集和方程的解
易錯點6:與坐標軸交點坐標一定要會求。面積最大值的求解方法,距離之和的最小值的求解方法,距離之差最大值的求解方法。
易錯點7:數(shù)形結(jié)合思想方法的運用,還應(yīng)注意結(jié)合圖像性質(zhì)解題。函數(shù)圖象與圖形結(jié)合學會從復(fù)雜圖形分解為簡單圖形的方法,圖形為圖像提供數(shù)據(jù)或者圖像為圖形提供數(shù)據(jù)。
易錯點8:自變量的取值范圍有:二次根式的被開方數(shù)是非負數(shù),分式的分母不為0,0指數(shù)底數(shù)不為0,其它都是全體實數(shù)。
易錯點1:三角形的概念以及三角形的角平分線,中線,高線的特征與區(qū)別。
易錯點2:三角形三邊之間的不等關(guān)系,注意其中的“任何兩邊”。最短距離的方法。
易錯點3:三角形的內(nèi)角和,三角形的分類與三角形內(nèi)外角性質(zhì),特別關(guān)注外角性質(zhì)中的“不相鄰”。
易錯點4:全等形,全等三角形及其性質(zhì),三角形全等判定。著重學會論證三角形全等,三角形相似與全等的綜合運用以及線段相等是全等的特征,線段的倍分是相似的特征以及相似與三角函數(shù)的結(jié)合。邊邊角兩個三角形不一定全等。
易錯點5:兩個角相等和平行經(jīng)常是相似的基本構(gòu)成要素,以及相似三角形對應(yīng)高之比等于相似比,對應(yīng)線段成比例,面積之比等于相似比的平方。
易錯點6:等腰(等邊)三角形的定義以及等腰(等邊)三角形的判定與性質(zhì),運用等腰(等邊)三角形的判定與性質(zhì)解決有關(guān)計算與證明問題,這里需注意分類討論思想的滲入。
易錯點7:運用勾股定理及其逆定理計算線段的長,證明線段的數(shù)量關(guān)系,解決與面積有關(guān)的問題以及簡單的實際問題。
易錯點8:將直角三角形,平面直角坐標系,函數(shù),開放性問題,探索性問題結(jié)合在一起綜合運用探究各種解題方法。
易錯點9:中點,中線,中位線,一半定理的歸納以及各自的性質(zhì)。
易錯點10:直角三角形判定方法:三角形面積的確定與底上的高(特別是鈍角三角形)。
易錯點11:三角函數(shù)的定義中對應(yīng)線段的比經(jīng)常出錯以及特殊角的三角函數(shù)值。
數(shù)學中考知識點公式篇十四
1. 有理數(shù)、無理數(shù)、實數(shù)、非負數(shù)概念;
2.相反數(shù)、倒數(shù)、數(shù)的絕對值概念;
3.在已知中,以非負數(shù)a2、|a|、a (a≥0)之和為零作為條件,解決有關(guān)問題。
(1)實數(shù)的組成
(2)數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注童上述規(guī)定的三要素缺一不可),
實數(shù)與數(shù)軸上的點是一一對應(yīng)的。 數(shù)軸上任一點對應(yīng)的數(shù)總大于這個點左邊的點對應(yīng)的數(shù),
(3)相反數(shù): 實數(shù)的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù),叫做互為相反數(shù),零的相反效是零).
(4)絕對值
從數(shù)軸上看,一個數(shù)的.絕對值就是表示這個數(shù)的點與原點的距離
(5)倒數(shù): 實數(shù)a(a≠0)的倒數(shù)是(乘積為1的兩個數(shù),叫做互為倒數(shù));零沒有倒數(shù).
1. 考查近似數(shù)、有效數(shù)字、科學計算法;
2. 考查實數(shù)的運算;
3. 計算器的使用。
(1)加法: 同號兩數(shù)相加,取原來的符號,并把絕對值相加;
異號兩數(shù)相加。取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值;
任何數(shù)與零相加等于原數(shù)。
(2)減法 a-b=a+(-b)
(3)乘法: 兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘;零乘以任何數(shù)都得零.
(4)除法
(5)乘方
(6)開方 如果x2=a且x≥0,那么 =x; 如果x3=a,那么
在同一個式于里,先乘方、開方,然后乘、除,最后加、減.有括號時,先算括號里面.
(1)加法交換律 a+b=b+a
(2)加法結(jié)合律 (a+b)+c=a+(b+c)
(3)乘法交換律 ab=ba.
(4)乘法結(jié)合律 (ab)c=a(bc)
(5)分配律 a(b+c)=ab+ac
其中a、b、c表示任意實數(shù).運用運算律有時可使運算簡便.